Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(7): 246, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864996

RESUMO

In the pursuit of efficient photocatalytic materials for environmental applications, a new series of g-C3N4/N-doped CeO2 nanocomposites (g-C3N4/N-CeO2 NCs) was synthesized using a straightforward dispersion method. These nanocomposites were systematically characterized to understand their structural, optical, and chemical properties. The photocatalytic performance of g-C3N4/N-CeO2 NCs was evaluated by investigating their ability to degrade methylene blue (MB) dye, a model organic pollutant. The results demonstrate that the integration of g-C3N4 with N-doped CeO2 NCs reduces the optical energy gap compared to pristine N-doped CeO2, leading to enhanced photocatalytic efficiency. It is benefited from the existence of g-C3N4/N-CeO2 NCs not only in promoting the charge separation and inhibits the fast charge recombination but also in improving photocatalytic oxidation performance. Hence, this study highlights the potential of g-C3N4/N-CeO2 NCs as promising candidates for various photocatalytic applications, contributing to the advancement of sustainable environmental remediation technologies.


Assuntos
Cério , Luz , Azul de Metileno , Nanocompostos , Azul de Metileno/química , Cério/química , Nanocompostos/química , Catálise , Poluentes Químicos da Água/química , Grafite/química , Processos Fotoquímicos , Fotólise , Compostos de Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA