Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Immunopathol Pharmacol ; 38: 3946320241276894, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135409

RESUMO

Background: Pentagalloyl glucose (PGG) is a polyphenol with vasoprotective properties. Targeted delivery of PGG reversed aortic aneurysm growth in several rodent models associated with decreased number of macrophages and transforming growth factor-ß (TGF-ß) expression. Thus, we sought to determine cellular mechanisms by which PGG reduces macrophage-induced aortic pathogenicity and its relationship to TGF-ß. Methods: Using THP-1 cells, primary human aortic cells, and explanted rat aortas, we assessed the anti-inflammatory effect of PGG. Expression of pro/anti-inflammatory macrophage markers was analyzed. Adhesion of monocytes as well as oxidative stress status, viability, and TGF-ß expression after primary aortic cell exposure to macrophage-conditioned medium with and without PGG were assessed. The release of TGF-ß was also examined in elastase-treated cultured rat aortas. Results: PGG pre-treatment of human aortic cell monolayers reduced the adhesion of THP-1 monocytes. PGG enhanced the expression of anti-inflammatory markers in THP-1-derived macrophages, and increased mitochondrial reactive oxygen species as well as mitochondrial polarization. Conditioned medium from THP-1-derived macrophages induced reactive oxygen species, cell death, and TGF-ß release from human aortic cells, which was suppressed by PGG. In explanted rat aortas, PGG reduced elastase mediated TGF-ß release. Conclusions: Combining anti-inflammatory, cytotoxic, and oxidative effects, PGG has high cardiovascular therapeutic potential. We confirmed previous in vivo observations whereby PGG suppressed TGF-ß response associated with disease resolution.


Assuntos
Anti-Inflamatórios , Aorta , Taninos Hidrolisáveis , Macrófagos , Fator de Crescimento Transformador beta , Taninos Hidrolisáveis/farmacologia , Humanos , Animais , Fator de Crescimento Transformador beta/metabolismo , Células THP-1 , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Anti-Inflamatórios/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Adesão Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
2.
BMC Cancer ; 23(1): 1148, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007466

RESUMO

BACKGROUND: Neuroblastoma (NB), the most common extracranial solid malignancy in children, carries a poor prognosis in high-risk disease, thus requiring novel therapeutic approaches. Survivin is overexpressed in NB, has pro-mitotic and anti-apoptotic functions, and impacts on oxidative phosphorylation (OXPHOS) and aerobic glycolysis. The subcellular localization and hence function of survivin is directed by the GTPase Ran. AIM: To determine efficacy and modes of action of the survivin-Ran inhibitor LLP-3 as a potential novel therapy of NB. METHODS: Survivin and Ran mRNA expression in NB tumors was correlated to patient survival. Response to LLP-3 in NB cell lines was determined by assays for viability, proliferation, apoptosis, clonogenicity and anchorage-independent growth. Interaction of survivin and Ran was assessed by proximity-linked ligation assay and their subcellular distribution by confocal immunofluorescence microscopy. Expression of survivin, Ran and proteins important for OXPHOS and glycolysis was determined by Western blot, hexokinase activity by enzymatic assay, interaction of survivin with HIF-1α by co-IP, and OXPHOS and glycolysis by extracellular flux analyzer. RESULTS: High mRNA expression of survivin and Ran is correlated with poor patient survival. LLP-3 decreases viability, induces apoptosis, and inhibits clonogenic and anchorage-independent growth in NB cell lines, including those with MYCN amplification, and mutations of p53 and ALK. LLP-3 inhibits interaction of survivin with Ran, decreasing their concentration both in the cytoplasm and the nucleus. LLP-3 impairs flexibility of energy metabolism by inhibiting both OXPHOS and glycolysis. Metabolic inhibition is associated with mitochondrial dysfunction and attenuated hexokinase activity but is independent of HIF-1α. CONCLUSION: LLP-3 attenuates interaction and concentration of survivin and Ran in NB cells. It controls NB cells with diverse genetic alterations, associated with inhibition of OXPHOS, aerobic glycolysis, mitochondrial function and HK activity. Thus, LLP-3 warrants further studies as a novel drug against NB.


Assuntos
Neuroblastoma , Fosforilação Oxidativa , Criança , Humanos , Survivina/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Linhagem Celular Tumoral , Apoptose/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Glicólise , RNA Mensageiro/metabolismo , Proliferação de Células
3.
Cells Tissues Organs ; 208(3-4): 113-133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32464628

RESUMO

Much of the current understanding on molecular and cellular events of adipose developmental biology comes from monolayer cell culture models using preadipocyte cell lines, although in vivo adipose tissue consists of a much more complex three-dimensional microenvironment of diverse cell types, extracellular network, and tissue-specific morphological and functional features. Added to this fact, the preadipocytes, on which the adipogenesis mechanisms are mostly explored, possess some serious limitations (e.g., time of initial subculture and adipogenic differentiation time), which, perhaps, can efficiently be replaced with progenitor cells such as adipose tissue-derived stem cells (ASCs). With the objective of developing a better in vitro model for adipose developmental biology, this project involves gene expression profiling of human ASCs (hASCs) during their differentiation to adipocytes in a 2D versus 3D culture model. This transcriptional-level analysis revealed that gene expression patterns of adipogenesis-induced hASCs in a 3D self-assembled polypeptide hydrogel are relatively different from the 2D monolayered cells on plastic hard substrate. Moreover, analysis of adipogenic lineage progression 9 days after adipogenic induction shows earlier differentiation of hASCs in 2D over their 3D counterparts. However, differentiation in 2D shows some unexpected behavior in terms of gene expression, which does not seem to be related to adipogenic lineage specification. Since hASCs are already being used in clinical trials due to their therapeutic potential, it is important to have a clear understanding of the molecular mechanisms in an in vivo model microenvironment like the one presented here.

4.
AMB Express ; 7(1): 181, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28936604

RESUMO

The study was conducted to select the best promising keratinolytic bacterial strain. A good keratinase positive bacterium isolated from the soil samples of Hazaribagh tannery industrial zone, Dhaka was identified as Arthrobacter genus depending on the conventional techniques and confirmed as Arthrobacter sp. by sequencing 16S rRNA gene. The medium components and culture conditions were optimized to enhance keratinase production through shake flask culture. Keratin and feather powder (10 g/l or 1%) were good substrates for the highest keratinase production along with yeast extract (0.2 g/l or 0.02%) as an organic nitrogen source and potassium nitrate (1 g or 0.1%) as an inorganic nitrogen source. Maximum yield of keratinase was found after 24 h of incubation at 37 °C with an initial pH of 7.0 and inoculums volume 5% under 150 rpm when keratin, yeast extract and potassium nitrate were used as nutrient sources. Keratinase production was more than 5.0-fold increased when all optimized parameters were applied simultaneously. The optimum reaction temperature and pH were determined to be 40 °C and 8.0 respectively for crude keratinase activity. Therefore, Arthrobacter sp. NFH5 might be used for large scale production of keratinase for industrial purposes in less time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA