Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 201: 116214, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457875

RESUMO

Data on MP in aquatic environments have low resolution in space and time. Scaling up sampling and increasing analysis throughput are the main bottlenecks. We combined two approaches: an uncrewed surface vehicle (USV) and near infrared hyperspectral imaging (NIR-HSI) for sampling and analysis of MP > 300 µm. We collected 35 water samples over 4 d in a coastal area. Samples were analyzed using NIR-HSI and Fourier transform infrared spectroscopy (FTIR). Spiked samples were used to determine recovery. We conclude that using a USV can mitigate issues of traditional trawls like scalability, repeatability, and contamination. NIR-HSI detects more polyethylene but less polypropylene than FTIR analysis and reduces analysis time significantly. Highly variable concentrations were found at both sampling locations, with mean MP concentration of 0.28 and 0.01 MP m-3 for location A and B respectively. USV sampling in tandem with NIR-HSI is an effective analytical pipeline for MP monitoring.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos , Imageamento Hiperespectral , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
2.
Appl Opt ; 62(19): 5139-5150, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707217

RESUMO

The ArcLight observatory provides an hourly continuous time series of all-sky images providing light climate data (intensity, spectral composition, and photoperiod) from the Arctic (Svalbard at 79°N). Until recently, no complete annual time series of light climate relevant for biological processes has been provided from the high Arctic because of insufficient sensitivity of commercial light sensors during the Polar Night. The ArcLight set up is unique, as it provides both all-sky images and the corresponding integrated spectral irradiance in the visible part of the solar electromagnetic spectrum (E P A R ). Here we present a further development providing hourly diel-annual dynamics from 2020 of the irradiance partitioned into the red, green, and blue parts of the solar spectrum and illustrate their relation to weather conditions, and sun and moon trajectories. We show that there is variation between the RGB proportions of irradiance throughout the year, with the blue part of the spectrum showing the greatest variation, which is dependent on weather conditions (i.e., cloud cover). We further provide an example of the biological impact of these spectral variations in the light climate using in vivo Chl a-specific absorption coefficients of diatoms (mean of six low light acclimated northern-Arctic bloom-forming species) to model total algal light absorption (AQ t o t a l ) and the corresponding fraction of quanta used by Photosystem II (AQPSII) (O 2 production) in RGB bands and the potential impacts on the photoreceptor response, suggesting periods where repair and maintenance functions dominate activity in the absence of appreciable levels of red or green light. The method used here can be applied to light climate data and spectral response data worldwide to give localized ecological models of AQ.

3.
Appl Opt ; 60(22): 6456-6468, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612881

RESUMO

The ArcLight observatory provides hourly continuous time series of light regime data (intensity, spectral composition, and photoperiod) from the Arctic, Svalbard at 79° N. Until now, no complete annual time series of biologically relevant light has been provided from the high Arctic due to insufficient sensitivity of commercial light sensors during the Polar Night. We describe a camera system providing all-sky images and the corresponding integrated spectral irradiance (EPAR) in energy or quanta units, throughout a complete annual cycle. We present hourly-diel-annual dynamics from 2017 to 2020 of irradiance and its relation to weather conditions, sun and moon trajectories.

4.
PLoS One ; 11(8): e0160404, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27494028

RESUMO

Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of fine-scale (< 10 m) behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS), which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV) video-recorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS) and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (rs = 0.184, p<0.001). The model also revealed that tracked fish opportunistically displace with respect to subsurface current flow. Thus, we show how physical forcing and current structure provide a rationale for a predator's fine-scale behaviour observed over a two weeks in May 2014.


Assuntos
Biologia Marinha/métodos , Tecnologia de Sensoriamento Remoto/métodos , Tetraodontiformes , Animais , Comportamento Animal , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Portugal , Robótica/instrumentação , Robótica/métodos , Comunicações Via Satélite , Zooplâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA