RESUMO
Background: The effect of the expression of the newly identified immune checkpoint, T cell immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain (TIGIT) on NK cells in core binding factor-acute myeloid leukemia (CBF-AML) remains to be investigated. Methods: Fresh bone marrow samples from a total of 39 newly diagnosed CBF-AML patients and 25 healthy donors (HDs) were collected for testing the phenotype and function state of total NK, CD56bright, and CD56dim NK cell subsets after in vitro stimulation. Results: The frequencies of TIGIT+ cells in total NK, CD56bright, and CD56dim NK cell subsets had no significant difference between patients and HDs. TNF-α and INF-γ levels were uniformly lower in TIGIT+ cells than the corresponding TIGIT- cells in all HDs, whereas those for TIGIT+ to TIGIT- cells in patients were highly heterogenous; TIGIT expression was not related to PFP and GZMB expression in HDs, whereas it was related to higher intracellular PFP and GZMB levels in patients. Patients' TIGIT+ NK cells displayed lower K562 cell-killing activity than their TIGIT- NK cells. In addition, high frequencies of TIGIT+ cells in total NK and CD56dim NK cells were associated with poor RFS. Conclusions: TIGIT expression affected the diagnostic bone marrow-sited NK cell function and had prognostic significance in CBF-AML patients.
RESUMO
T lymphocytes play a vital role in the immune-inflammatory response following a stroke. However, the specific mechanisms behind the contrasting functions of T cells in the brain and peripheral tissues after a stroke remain unclear and require further investigation. T-cell receptors (TCRs) are essential in controlling how T lymphocytes develop and become active. This study aims to gain a deeper understanding of the biological function of T lymphocytes by analyzing the TCR repertoire in patients who have experienced an acute ischemic stroke (AIS). High-throughput TCR sequencing was conducted on peripheral blood samples from 25 AIS patients and 10 healthy controls. We compared the percentage of T cells and the characteristics of the TCR repertoire, specifically focusing on the recombination of V(D)J gene fragments and the diversity of the complementarity determining region 3 (CDR3) of the Vß gene. Additionally, this study analyzed the potential biological significance of the skewed TCR repertoire in AIS patients. In patients with AIS, the proportion of circulating lymphocytes (LY%) decreased while the systemic immune-inflammatory index (SII) increased compared to healthy controls. The average number of TCR read pairs decreased, corresponding with the presence of lymphopenia. However, the recombination of V(D)J gene fragments, the number of CDR3 clonotypes, and the diversity of CDR3 was elevated in the peripheral blood of AIS patients. Furthermore, the increased number of CDR3 amino acid or nucleotide clonotypes was negatively correlated with neurologic deficits but positively correlated with AIS patients' systemic immune condition and functional outcomes. Our findings suggest that both immunosuppression and enhanced antigen-specific T-cell response may exist in the periphery of the AIS patients. Further investigation into the mechanisms underlying these opposing changes may lead to the discovery of novel targets to reverse immunosuppression or mitigate the detrimental effects of T cells in the lesioned brain of AIS patients.
RESUMO
Prognostic significance of soluble immune checkpoint molecule TIM-3 and its ligands in the plasma has been illustrated in various solid tumors, but such study in newly diagnosed acute myeloid leukemia (AML) remains absent. Soluble TIM-3, Gal-9 and CEACAM1 levels in the bone marrow plasma samples collected from 90 adult AML patients at diagnosis and 12 healthy donors were measured by enzyme-linked immunosorbent assays (ELISA), and 16 AML patients were simultaneously tested cell membrane TIM-3 expression by multi-color flow cytometry. AML patients had significantly elevated soluble TIM-3 levels and similar soluble Gal-9 and CEACAM1 levels compared with healthy donors (p = 0.0003, 0.26 and 0.96). In the whole cohort, high soluble TIM-3 level was the sole independent adverse prognostic factor for relapse-free survival (RFS) (p = 0.0060), and it together with adverse ELN genetic risk were independent poor prognostic factors for event-free survival (EFS) (p = 0.0030 and 0.0040); High soluble CEACAM1 level were significantly related to lower RFS (p = 0.028). In addition, high soluble Gal-9 level had significant association with lower RFS in patients receiving allogeneic hematopoietic stem cell transplantation (allo-HSCT) at the first complete remission (p = 0.037). Furthermore, soluble TIM-3 level tended to have positive correlation with the percentage of non-blast myeloid TIM-3+ cells in nucleated cells in AML (r = 0.48, p = 0.073). Therefore, the high soluble TIM-3 level in the diagnostic BM plasma predicted poor outcome in adult AML patients, and high sGal-9 level was associated with relapse after allo-HSCT.
RESUMO
This study investigates the impact of intrinsic strain and phase transitions on the thermodynamic stability and electronic properties of Cu1-xAxAlO2 solid solutions, which are key to their photocatalytic performance. It is demonstrated that Cu1-xAxAlO2 with A = Ag, Au, Pt can form continuous isostructural solid solutions due to relatively small compressive strain, while a substantial increase strain restricts Cu1-xPdxAlO2 to forming only limited solutions. For A = Li, Na, the formation of heterostructural solid solutions is facilitated by structural motif alterations, accommodating significant differences in ionic radii and A-O bond characteristics. Specifically, Cu1-xLixAlO2 exhibits a phase transition at x ≈ 0.333, whereas Cu1-xNaxAlO2 undergoes three distinct phase transitions. Electronic structure analysis indicates that in Cu1-xAxAlO2 (A = Ag, Au), d10-d10 closed-shell interactions dominate, enabling tunable band gaps with varying solubility. Nevertheless, increased intrinsic strain in metal sublattices, as seen in A = Pd and Pt, shifts antibonding states to the Fermi level, inducing a semiconductor-to-metal transition. Experimental evidence confirms that Ag+ ions modulate the band gaps and carrier dynamics in Cu1-xAgxAlO2, with Cu0.75Ag0.25AlO2 exhibiting heightened photoelectrochemical activity and a 38.5-fold enhancement in H2 production rate over CuAlO2. Additionally, the coordination environment changes between alkali metals and O, induced by phase transitions, effectively tune the band edge positions and carrier dynamics of Cu1-xAxAlO2 (A = Li, Na) heterostructural solid solutions. Therefore, 3R-Cu0.97Li0.03AlO2 with asymmetric nonlinear dumbbell O-Cu-O demonstrates the highest photocatalytic H2 production activity, 72.9 times greater than CuAlO2. In contrast, α-Cu1-xAxAlO2 with a smaller CuO6 octahedral splitting energy exhibits increased band gaps, resulting in diminished photocatalytic activity. This research underscores that strain-driven phase transition provides an additional control factor and new mechanism for regulating the photo(electro)catalytic activity of Cu1-xAxAlO2 solid solutions.
RESUMO
Background: T lymphocytes in tumor microenvironment play a pivotal role in the anti-tumor immunity, and the memory of T cells contributes to the long-term protection against tumor antigens. Compared to solid tumors, studies focusing on the T-cell differentiation in the acute myeloid leukemia (AML) bone marrow (BM) microenvironment remain limited. Patients and methods: Fresh BM specimens collected from 103 adult AML patients at diagnosis and 12 healthy donors (HDs) were tested T-cell differentiation subsets by multi-parameter flow cytometry. Results: CD4 and CD8 T-cell compartments had different constituted profiles of T-cell differentiated subsets, which was similar between AML patients and HDs. Compared to HDs, AML patients as a whole had a significantly higher proportion of CD8 effector T cells (Teff, P = 0.048). Moreover, the T-cell compartment of AML patients with no DNMT3A mutations skewed toward terminal differentiation at the expense of memory T cells (CD4 Teff: P = 0.034; CD8 Teff: P = 0.030; CD8 memory T: P = 0.017), whereas those with mutated DNMT3A had a decrease in CD8 naïve T (Tn) and CD4 effector memory T cells (Tem) as well as an increase in CD4 central memory T cells (Tcm) (P = 0.037, 0.053 and 0.053). Adverse ELN genetic risk correlated with a lower proportion of CD8 Tn. In addition, the low proportions of CD4 Tem and CD8 Tn independently predicted poorer relapse-free survival (RFS, HR [95%CI]: 5.7 (1.4-22.2), P = 0.017 and 4.8 [1.3-17.4], P = 0.013) and event-free survival (EFS, HR [95% CI]: 3.3 (1.1-9.5), P = 0.029; 4.0 (1.4-11.5), P = 0.010), respectively. Conclusions: AML patients had abnormal profiles of BM T-cell differentiation subsets at diagnosis, which was related to DNMT3A mutations. The low proportions of CD4 Tem and CD8 Tn predicted poor outcomes.
Assuntos
Diferenciação Celular , Leucemia Mieloide Aguda , Subpopulações de Linfócitos T , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Diferenciação Celular/imunologia , Prognóstico , Idoso , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto Jovem , Linfócitos T CD8-Positivos/imunologia , Mutação , Microambiente Tumoral/imunologia , Células T de Memória/imunologia , Linfócitos T CD4-Positivos/imunologia , DNA Metiltransferase 3A , Idoso de 80 Anos ou mais , AdolescenteRESUMO
Wilms' tumour 1 (WT1) can function as an oncogene or a tumour suppressor. Our previous clinical cohort studies showed that low WT1 expression at diagnosis independently predicted poor outcomes in acute myeloid leukaemia (AML) with RUNX1::RUNX1T1, whereas it had an opposite role in AML with non-favourable cytogenetic risk (RUNX1::RUNX1T1-deficient). The molecular mechanism by which RUNX1::RUNX1T1 affects the prognostic significance of WT1 in AML remains unknown. In the present study, first we validated the prognostic significance of WT1 expression in AML. Then by using the established transfected cell lines and xenograft tumour model, we found that WT1 suppresses proliferation and enhances effect of cytarabine in RUNX1::RUNX1T1(+) AML but has opposite functions in AML cells without RUNX1::RUNX1T1. Furthermore, as a transcription factor, WT1 physically interacts with RUNX1::RUNX1T1 and acts as a co-factor together with RUNX1::RUNX1T1 to activate the expression of its target gene DUSP6 to dampen extracellular signal-regulated kinase (ERK) activity. When RUNX1::RUNX1T1-deficient, WT1 can activate the mitogen-activated extracellular signal-regulated kinase/ERK axis but not through targeting DUSP6. These results provide a mechanism by which WT1 together with RUNX1::RUNX1T1 suppresses cell proliferation through WT1/DUSP6/ERK axis in AML. The current study provides an explanation for the controversial prognostic significance of WT1 expression in AML patients.
RESUMO
Coronavirus disease-2019 (COVID-19) has caused continuous effects on the global public, especially for susceptible and vulnerable populations like pregnant women. COVID-19-related studies and publications have shown blowout development, making it challenging to identify development trends and hot areas by using traditional review methods for such massive data. Aimed to perform a bibliometric analysis to explore the status and hotspots of COVID-19 in obstetrics. An online search was conducted in the Web of Science Core Collection (WOSCC) database from January 01, 2020 to November 31, 2022, using the following search expression: (((TS= ("COVID 19" OR "coronavirus 2019" OR "coronavirus disease 2019" OR "SARS-CoV-2" OR "2019-nCoV" OR "2019 novel coronavirus" OR "SARS coronavirus 2" OR "Severe Acute Respiratory Syndrome Coronavirus-2" OR "SARS-COV2")) AND TS= ("obstetric*" OR "pregnancy*" OR "pregnant" OR "parturition*" OR "puerperium"))). VOSviewer version 1.6.18, CiteSpace version 6.1.R6, R version 4.2.0, and Rstudio were used for the bibliometric and visualization analyses. 4144 articles were included in further analysis, including authors, titles, number of citations, countries, and author affiliations. The United States has contributed the most significant publications with the leading position. "Sahin, Dilek" has the largest output, and "Khalil, Asma" was the most influential author with the highest citations. Keywords of "Cov," "Experience," and "Neonate" with the highest frequency, and "Systematic Review" might be the new research hotspots and frontiers. The top 3 concerned genes included ACE2, CRP, and IL6. The new research hotspot is gradually shifting from the COVID-19 mechanism and its related clinical research to reviewing treatment options for pregnant women. This research uniquely delves into specific genes related to COVID-19's effects on obstetrics, a focus that has not been previously explored in other reviews. Our research enables clinicians and researchers to summarize the overall point of view of the existing literature and obtain more accurate conclusions.
Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Obstetrícia , Pandemias , COVID-19/epidemiologia , COVID-19/genética , Bibliometria , Obstetrícia/tendências , Humanos , Feminino , Gravidez , Enzima de Conversão de Angiotensina 2/genética , Proteína C-Reativa/genética , Interleucina-6/genéticaRESUMO
Limited treatment options and poor prognosis present significant challenges in the treatment of lung squamous cell carcinoma (LUSC). Disulfidptosis impacts cancer progression and prognosis. We developed a prognostic signature using disulfidptosis-related long non-coding RNAs (lncRNAs) to predict the prognosis of LUSC patients. Gene expression matrices and clinical information for LUSC were downloaded from the TCGA database. Co-expression analysis identified 209 disulfidptosis-related lncRNAs. LASSO-Cox regression analysis identified nine key lncRNAs, forming the basis for establishing a prognostic model. The model's validity was confirmed by Kaplan-Meier and ROC curves. Cox regression analysis identified the risk score (RS) as an independent prognostic factor inversely correlated with overall survival. A nomogram based on the RS demonstrated good predictive performance for LUSC patient prognosis. The relationship between RS and immune function was explored using ESTIMATE, CIBERSORT, and ssGSEA algorithms. According to the TIDE database, a negative correlation was found between RS and immune therapy responsiveness. The GDSC database revealed that 49 drugs were beneficial for the low-risk group and 25 drugs for the high-risk group. Silencing C10orf55 expression in SW900 cells reduced invasiveness and migration potential. In summary, this lncRNA model based on TCGA-LUSC data effectively predicts prognosis and assists clinical decision-making.
Assuntos
Carcinoma de Células Escamosas , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Prognóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Biomarcadores Tumorais/genética , Masculino , Nomogramas , Feminino , Estimativa de Kaplan-Meier , Linhagem Celular Tumoral , Perfilação da Expressão GênicaRESUMO
Multiple myeloma (MM) is a Ubiquitin Proteasome System (UPS)-dysfunction disease. We previously reported that high PRAME transcript levels associated with unfavorable progression free survival (PFS) in patients with no bortezomib therapy, and bortezomib-containing regimen significantly improved PFS in patients with high PRAME transcript levels, which indicated that PRAME expression was prognostic for MM patients, and was related to proteasome inhibitor treatment. However, molecular mechanisms underlying the above clinical performance remain unclear. In the present study, MM cell models with PRAME knockdown and overexpression were established, and PRAME was identified to play the role of promoting proliferation in MM cells. P-Akt signaling was found to be activated as PRAME overexpressed. As a substrate recognizing subunit (SRS) of the E3 ubiquitin ligase, PRAME targets substrate proteins and mediates their degradation. CTMP and p21 were found to be the novel targets of PRAME in the Cul2-dependent substrate recognition process. PRAME interacted with and mediated ubiquitination and degradation of CTMP and p21, which led to accumulation of p-Akt and CCND3 proteins, and thus promoted cell proliferation and increased bortezomib sensitivity in MM cells.
RESUMO
This study aimed to identify and quantify free fatty acids (FFAs), secretory phospholipase A2 group IIa (sPLA2-IIa) and cytosolic phospholipase A2 (cPLA2) in serum of superior limbic keratoconjunctivitis (SLK) patients and explored the association between FFAs, sPLA2-IIa and cPLA2 variations and SLK. Targeted metabolomic analysis of FFAs in serum was performed by gas chromatography tandem mass spectrometry (GC-MS/MS) analysis on 16 SLK patients (43.88 ± 7.88 years; female: 62.50%) and 25 healthy controls (43.12 ± 7.88 years; female: 64.00%). Qualitative and absolute quantitative results of FFAs were obtained and classified according to gender and thyroid tests. Differential lipid metabolites, metabolomic pathways and biomarkers were further evaluated. The serum sPLA2-IIa and cPLA2 were determined by enzyme linked immunosorbent assay (ELISA). Among 40 FFAs identified, 6 FFAs showed significant changes (P < 0.05) in SLK patients, including 4 decreased and 2 increased. They were mainly related to unsaturated fatty acid biosynthesis, α-linolenic acid and linoleic acid metabolism, and fatty acid biosynthesis. When dividing the data by gender or abnormal thyroid tests, some comparable FFAs alterations displayed in SLK patients. The ROC analysis revealed that the AUC values of linoleic acid, γ-linolenic acid, cis-8,11,14-eicosatrienoic acid, stearic acid, and palmitic acid, were all greater than 0.8. The serum concentrations of sPLA2-IIa and cPLA2 in patients with SLK were significantly higher than that in healthy controls. Lipidomics disturbance might be the potential mechanism of SLK. Serum FFA biomarkers associated with SLK have potential for the diagnosis and treatment of the disease.
Assuntos
Biomarcadores , Ácidos Graxos não Esterificados , Lipidômica , Metabolômica , Humanos , Feminino , Masculino , Adulto , Ácidos Graxos não Esterificados/sangue , Lipidômica/métodos , Pessoa de Meia-Idade , Metabolômica/métodos , Biomarcadores/sangue , Cromatografia Gasosa-Espectrometria de Massas , Ceratoconjuntivite/sangue , Ceratoconjuntivite/diagnóstico , Ensaio de Imunoadsorção Enzimática , Espectrometria de Massas em Tandem , Fosfolipases A2 do Grupo II/sangueRESUMO
Hydroformylation (HF) or isomerization-hydroformylation (ISO-HF) represents the most direct and practical route for producing aldehydes on an industrial scale. To resolve the issues of low activity, low linear/branched (l/b) ratio, and low stability in HF and ISO-HF, we herein reported a class of spirocyclic diphosphites. Notably, the ligand termed O-SDPhite afforded excellent catalytic activity and regioselectivity for the HF of various olefins. Excellent l/b ratio and an unprecedented turnover number of up to 17,620,000 were achieved. O-SDPhite was also found to be effective in the regioselective ISO-HF of the industrially related cheap and abundant C4 Raffinates to n-valeraldehyde produced on a multimillion-ton scale. The reaction with O-SDPhite, superior to that of benchmark Biphephos, was continuously operated for 41 days and afforded an average 38.6 l/b ratio (31 days and 14.7 l/b ratio for Biphephos).
RESUMO
Solar photocatalytic H2 production from lignocellulosic biomass has attracted great interest, but it suffers from low photocatalytic efficiency owing to the absence of highly efficient photocatalysts. Herein, we designed and constructed ultrathin MoS2-modified porous TiO2 microspheres (MT) with abundant interface Ti-S bonds as photocatalysts for photocatalytic H2 generation from lignocellulosic biomass. Owing to the accelerated charge transfer related to Ti-S bonds, as well as the abundant active sites for both H2 and âOH generation, respectively, related to the high exposed edge of MoS2 and the large specific surface area of TiO2, MT photocatalysts demonstrate good performance in the photocatalytic conversion of α-cellulose and lignocellulosic biomass to H2. The highest H2 generation rate of 849 µmol·g-1·h-1 and apparent quantum yield of 4.45% at 380 nm was achieved in α-cellulose aqueous solution for the optimized MT photocatalyst. More importantly, lignocellulosic biomass of corncob, rice hull, bamboo, polar wood chip, and wheat straw were successfully converted to H2 over MT photocatalysts with H2 generation rate of 10, 19, 36, 29, and 8 µmol·g-1·h-1, respectively. This work provides a guiding design approach to develop highly active photocatalysts via interface engineering for solar H2 production from lignocellulosic biomass.
RESUMO
Background: Numerous studies have shown a strong correlation between disulfidptosis and various cancers. However, the expression and function of RPN1, a crucial gene in disulfidptosis, remain unclear in the context of cancer. Methods: Gene expression and clinical information on lung adenocarcinoma were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. RPN1 expression was analyzed using the Timer2.0 and the Human Protein Atlas (HPA) databases. Prognostic significance was assessed using Cox regression analysis and Kaplan-Meier curves. Genetic mutations and methylation levels were examined using the cBioPortal and UALCAN platforms, respectively. The relationship between RPN1 and tumor mutation burden (TMB) and microsatellite instability (MSI) across different cancer types was analyzed using the Spearman correlation coefficient. The relationship between RPN1 and immune cell infiltration was analyzed using the Timer2.0 database, whereas variations in drug sensitivity were explored using the CellMiner database. Receiver operating characteristic curves validated RPN1's diagnostic potential in glioma, and its correlation with immune checkpoint inhibitors (ICIs) was assessed using Spearman's correlation coefficient. Single-sample gene set enrichment analysis elucidated a link between RPN1 and immune cells and pathways. In addition, a nomogram based on RPN1 was developed to predict patient prognosis. The functional impact of RPN1 on glioma cells was confirmed using scratch and Transwell assays. Result: RPN1 was aberrantly expressed in various cancers and affected patient prognosis. The main mutation type of RPN1 in the cancer was amplified. RPN1 exhibited a positive correlation with myeloid-derived suppressor cells, neutrophils, and macrophages, and a negative correlation with CD8+ T cells and hematopoietic stem cells. RPN1 expression was associated with TMB and MSI in various cancers. The expression of RPN1 affected drug sensitivity in cancer cells. RPN1 was positively correlated with multiple ICIs in gliomas. RPN1 also affected immune cell infiltration into the tumor microenvironment. RPN1 was an independent prognostic factor for gliomas, and the nomogram demonstrated excellent predictive performance. Interference with RPN1 expression reduces the migratory and invasive ability of glioma cells. Conclusion: RPN1 exerts multifaceted effects on different stages of cancer, including immune infiltration, prognosis, and treatment outcomes. RPN1 expression affects the prognosis and immune microenvironment infiltration in patients with glioma, making RPN1 a potential target for the treatment of glioma.
RESUMO
BACKGROUND: Liver cancer is typified by a complex inflammatory tumor microenvironment, where an array of cytokines and stromal cells orchestrate a milieu that significantly influences tumorigenesis. Interleukin-17A (IL-17A), a pivotal pro-inflammatory cytokine predominantly secreted by Th17 cells, is known to play a substantial role in the etiology and progression of liver cancer. However, the precise mechanism by which IL-17A engages with hepatic stellate cells (HSCs) to facilitate the development of hepatocellular carcinoma (HCC) remains to be fully elucidated. This investigation seeks to unravel the interplay between IL-17A and HSCs in the context of HCC. METHODS: An HCC model was established in male Sprague-Dawley rats using diethylnitrosamine to explore the roles of IL-17A and HSCs in HCC pathogenesis. In vivo overexpression of Il17a was achieved using adeno-associated virus. A suite of molecular techniques, including RT-qPCR, enzyme-linked immunosorbent assays, Western blotting, cell counting kit-8 assays and colony formation assays, was employed for in vitro analyses. RESULTS: The study findings indicate that IL-17A is a key mediator in HCC promotion, primarily through the activation of hepatic progenitor cells (HPCs). This pro-tumorigenic influence appears to be mediated by HSCs, rather than through a direct effect on HPCs. Notably, IL-17A-induced expression of fibroblast activation protein (FAP) in HSCs emerged as a critical factor in HCC progression. Silencing Fap in IL-17A-stimulated HSCs was observed to reverse the HCC-promoting effects of HSCs. CONCLUSIONS: The collective evidence from this study implicates the IL-17A/FAP signaling axis within HSCs as a contributor to HCC development by enhancing HPC activation. These findings bolster the potential of IL-17A as a diagnostic and preventative target for HCC, offering new avenues for therapeutic intervention.
Assuntos
Carcinoma Hepatocelular , Células Estreladas do Fígado , Interleucina-17 , Neoplasias Hepáticas , Animais , Humanos , Masculino , Ratos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Endopeptidases/metabolismo , Endopeptidases/genética , Regulação Neoplásica da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Interleucina-17/metabolismo , Interleucina-17/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ratos Sprague-Dawley , Microambiente TumoralRESUMO
BACKGROUND: Dendritic cells (DCs) regulate the immune response associated with T lymphocytes, but their role in stroke remains unclear. In this study, we investigated the causal relationship between DCs and T-cell response in intracerebral hemorrhage (ICH) by focusing on TLRs (toll-like receptors) that may modulate the function of DCs. METHODS: We studied the effects of TLR4, TLR2, and TLR9 on DC-mediated T-cell response and the outcomes of ICH using male C57BL/6 and CD11c-DTx (diphtheria toxin) receptor mice. We administered specific agents intraperitoneally or orally and evaluated the results using flow cytometry, real-time polymerase chain reaction, Western blotting, immunofluorescence staining, histopathology, and behavioral tests. RESULTS: TLR4 and TLR2 activation induces DC maturation and reduces the ratio of regulatory T to T-helper 17 cells in the brain and periphery after ICH. When either of these receptors is activated, it can worsen neuroinflammation and exacerbate ICH outcomes. TLR9 also promotes DC maturation, stabilizing the number of DCs, particularly conventional DCs. TLR9 has the opposite effects on regulatory T/T-helper 17 balance, neuroinflammation, and ICH outcomes compared with TLR4 and TLR2. Upon stimulation, TLR4 and TLR9 may achieve these effects through the p38-MAPK (p38-mitogen-activated protein kinase)/MyD88 (myeloid differentiation primary response gene 88) and indoleamine 2,3-dioxygenase 1 (IDO1)/GCN2 (general control nonderepressible 2) signaling pathways, respectively. DCs act as intermediaries for TLR-mediated T-cell response. CONCLUSIONS: TLR-mediated opposing effects of DCs on T-cell response may provide novel strategies to treat ICH.
Assuntos
Hemorragia Cerebral , Células Dendríticas , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Células Th17 , Animais , Hemorragia Cerebral/imunologia , Hemorragia Cerebral/metabolismo , Células Dendríticas/imunologia , Linfócitos T Reguladores/imunologia , Camundongos , Células Th17/imunologia , Masculino , Receptores Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/imunologiaRESUMO
Interpreting function and fitness effects in diverse plant genomes requires transferable models. Language models (LMs) pre-trained on large-scale biological sequences can learn evolutionary conservation and offer cross-species prediction better than supervised models through fine-tuning limited labeled data. We introduce PlantCaduceus, a plant DNA LM based on the Caduceus and Mamba architectures, pre-trained on a curated dataset of 16 Angiosperm genomes. Fine-tuning PlantCaduceus on limited labeled Arabidopsis data for four tasks, including predicting translation initiation/termination sites and splice donor and acceptor sites, demonstrated high transferability to 160 million year diverged maize, outperforming the best existing DNA LM by 1.45 to 7.23-fold. PlantCaduceus is competitive to state-of-the-art protein LMs in terms of deleterious mutation identification, and is threefold better than PhyloP. Additionally, PlantCaduceus successfully identifies well-known causal variants in both Arabidopsis and maize. Overall, PlantCaduceus is a versatile DNA LM that can accelerate plant genomics and crop breeding applications.
RESUMO
Prostate cancer (PCa) is the most common malignancy of the male urinary system. Mitophagy, as a type of autophagy, can remove damaged mitochondria in cells. Mitophagy-related genes (MRGs) have been shown to play critical roles in the development of PCa. To this end, based on the comprehensive analysis of RNA-seq and scRNA-seq data of PCa samples and their controls, this paper identified PCa subtypes and constructed a prognostic model. In this paper, we downloaded scRNA-seq and RNA-seq data from Gene Expression Omnibus (GEO) and TCGA database. Based on the R package "Seurat" to process the scRNA-seq data, a total of five cell types were identified. Each cell population was scored based on the R package "AUCell" and using the intersection genes between MRGs and each cell population. The B cell population was then identified as a high-scoring cell population. Differentially expressed genes in RNA-seq data were identified based on the R package "limma" and intersected with previously intersected genes. Then, based on univariate Cox regression analysis and Lasso-Cox regression analysis, the prognostic genes were screened, and the risk model was constructed (composed of ADH5, CAT, BCAT2, DCXR, OGT, and FUS). The model is validated on internal and external test sets. Independent prognostic analysis identified age, N stage, and risk score as independent prognostic factors. This paper's risk models and prognostic genes can provide a reference for developing novel therapeutic targets for PCa.
RESUMO
An intensive phytochemical investigation into the fruits of Schisandra chinensis afforded 28 triterpenoids incorporating diverse backbones with methyl-migration, ring-expansion and ring-opening features. Among them, ten compounds (1-10) including three likely extracting artefacts (8-10) were described for the first time. Their structures were fully characterized by comprehensive spectroscopic analyses, with the absolute configurations established via electronic circular dichroism and Mosher's NMR techniques. Preliminary biological evaluations revealed that nine isolates showed inhibitory activity against the hyperglycemic target α-glycosidase and 12 compounds exerted cytotoxicity toward three female tumor cell lines (Hela (cervical), MDA-MB231 and MCF-7 (breast)). Compound 6 exhibited the most promising potency on all the three tested cancer cells, and further assessment demonstrated that it could induce significant cell apoptosis and cycle arrest, as well as suppress cell migration, by regulating relevant proteins in MDA-MB231 cells.
Assuntos
Antineoplásicos Fitogênicos , Apoptose , Frutas , Inibidores de Glicosídeo Hidrolases , Compostos Fitoquímicos , Schisandra , Triterpenos , Schisandra/química , Humanos , Frutas/química , Estrutura Molecular , Triterpenos/farmacologia , Triterpenos/isolamento & purificação , Triterpenos/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Apoptose/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , ChinaRESUMO
Background: One of the most common causes of lung cancer relapse after clinical treatment is radioresistance. However, the mechanism underlying radioresistance remains unclear. In this study, we investigated the role of Ras p21 protein activator (RASA2) in non-small cell lung cancer (NSCLC). Methods: The messenger RNA (mRNA) of RASA2 was tested via reverse-transcription quantitative polymerase chain reaction (RT-qPCR) of cancer tissues from patients with NSCLC. Computed tomography (CT) and bioluminescent imaging (BLI) were used to monitor the tumor growth of patients and orthotopic mice, respectively. Protein-protein interaction was quantified via immunoprecipitation and glutathione S transferase (GST) pulldown assay. Western blotting was used to evaluate the phosphorylation and ubiquitination level of p53. Results: The results indicated a negative correlation between the mRNA expression levels of RASA2 in tumor tissues with patients' response to radiotherapy. Patients with a high expression of RASA2 had a lower objective response rate (ORR) after 1 month of radiotherapy than patients with low expression of RASA2 after 1 month of radiotherapy. In terms of mechanism, we proved that RASA2 can directly bind to p53 to promote the phosphorylation of p53, which inhibits its transcriptional activity and further promotes its degradation through the ubiquitin/proteasome pathway. In this process, the apoptosis of tumor cells is inhibited due to impaired p53 surveillance, which leads to radioresistance. Conclusions: Our results demonstrate that RASA2 negatively regulates p53 in cancer cells and therefore promotes radioresistance, providing a new predictive biomarker and a potential therapeutic target for radioresistance.
RESUMO
In addition to RUNX1::RUNX1T1 transcript levels, measurable residual disease monitoring using KIT mutant (KITmut ) DNA level is reportedly predictive of relapse in t (8; 21) acute myeloid leukemia (AML). However, the usefulness of KITmut transcript levels remains unknown. A total of 202 bone marrow samples collected at diagnosis and during treatment from 52 t (8; 21) AML patients with KITmut (D816V/H/Y or N822K) were tested for KITmut transcript levels using digital polymerase chain reaction. The individual optimal cutoff values of KITmut were identified by performing receiver operating characteristics curve analysis for relapse at each of the following time points: at diagnosis, after achieving complete remission (CR), and after Course 1 and 2 consolidations. The cutoff values were used to divide the patients into the KITmut -high (KIT_H) group and the KITmut -low (KIT_L) group. The KIT_H patients showed significantly lower relapse-free survival (RFS) and overall survival (OS) rates than the KIT_L patients after Course 1 consolidation (p = 0.0040 and 0.021, respectively) and Course 2 consolidation (p = 0.018 and 0.011, respectively) but not at diagnosis and CR. The <3-log reduction in the RUNX1::RUNX1T1 transcript levels after Course 2 consolidation was an independent adverse prognostic factor for RFS and OS. After Course 2 consolidation, the KIT_H patients with >3-log reduction in the RUNX1::RUNX1T1 transcript levels (11/45; 24.4%) had similar RFS as that of patients with <3-log reduction in the RUNX1::RUNX1T1 transcript levels. The combination of KITmut and RUNX1::RUNX1T1 transcript levels after Course 2 consolidation may improve risk stratification in t (8; 21) AML patient with KIT mutation.