Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(12): 113508, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38019650

RESUMO

Group 3 innate lymphoid cells (ILC3s) are vital for defending tissue barriers from invading pathogens. Hypoxia influences the production of intestinal ILC3-derived cytokines by activating HIF. Yet, the mechanisms governing HIF-1α in ILC3s and other innate RORγt+ cells during in vivo infections are poorly understood. In our study, transgenic mice with specific Hif-1a gene inactivation in innate RORγt+ cells (RAG1KO HIF-1α▵Rorc) exhibit more severe colitis following Citrobacter rodentium infection, primarily due to the inability to upregulate IL-22. We find that HIF-1α▵Rorc mice have impaired IL-22 production in ILC3s, while non-ILC3 innate RORγt+ cells, also capable of producing IL-22, remain unaffected. Furthermore, we show that IL-18, induced by Toll-like receptor 2, selectively triggers IL-22 in ILC3s by transcriptionally upregulating HIF-1α, revealing an oxygen-independent regulatory pathway. Our results highlight that, during late-stage C. rodentium infection, IL-18 induction in the colon promotes IL-22 through HIF-1α in ILC3s, which is crucial for protection against this pathogen.


Assuntos
Colite , Interleucinas , Camundongos , Animais , Interleucinas/genética , Interleucinas/metabolismo , Imunidade Inata , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Linfócitos/metabolismo , Interleucina-18 , Inflamação , Camundongos Transgênicos , Camundongos Endogâmicos C57BL
2.
Nat Cardiovasc Res ; 2: 144-158, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36949957

RESUMO

Somatic mutations in blood indicative of clonal hematopoiesis of indeterminate potential (CHIP) are associated with an increased risk of hematologic malignancy, coronary artery disease, and all-cause mortality. Here we analyze the relation between CHIP status and incident peripheral artery disease (PAD) and atherosclerosis, using whole-exome sequencing and clinical data from the UK Biobank and Mass General Brigham Biobank. CHIP associated with incident PAD and atherosclerotic disease across multiple beds, with increased risk among individuals with CHIP driven by mutation in DNA Damage Repair (DDR) genes such as TP53 and PPM1D. To model the effects of DDR-induced CHIP on atherosclerosis, we used a competitive bone marrow transplantation strategy, and generated atherosclerosis-prone Ldlr-/- chimeric mice carrying 20% p53-deficient hematopoietic cells. The chimeric mice were analyzed 13-weeks post-grafting and showed increased aortic plaque size and accumulation of macrophages within the plaque, driven by increased proliferation of p53-deficient plaque macrophages. In summary, our findings highlight the role of CHIP as a broad driver of atherosclerosis across the entire arterial system beyond the coronary arteries, and provide genetic and experimental support for a direct causal contribution of TP53-mutant CHIP to atherosclerosis.

4.
Cell Rep ; 33(4): 108326, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33113366

RESUMO

Human aging is frequently accompanied by the acquisition of somatic mutations in the hematopoietic system that induce clonal hematopoiesis, leading to the development of a mutant clone of hematopoietic progenitors and leukocytes. This somatic-mutation-driven clonal hematopoiesis has been associated with an increased incidence of cardiovascular disease and type 2 diabetes, but whether this epidemiological association reflects a direct, causal contribution of mutant hematopoietic and immune cells to age-related metabolic abnormalities remains unexplored. Here, we show that inactivating mutations in the epigenetic regulator TET2, which lead to clonal hematopoiesis, aggravate age- and obesity-related insulin resistance in mice. This metabolic dysfunction is paralleled by increased expression of the pro-inflammatory cytokine IL-1ß in white adipose tissue, and it is suppressed by pharmacological inhibition of NLRP3 inflammasome-mediated IL-1ß production. These findings support a causal contribution of somatic TET2 mutations to insulin resistance and type 2 diabetes.


Assuntos
Hematopoiese Clonal/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Resistência à Insulina/genética , Obesidade/genética , Envelhecimento , Animais , Humanos , Camundongos
5.
J Pathol ; 249(4): 509-522, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31372995

RESUMO

The mechanisms by which lamin A/C in CD4+ T-cells control intestinal homeostasis and can cause inflammatory bowel disease (IBD) are unknown. Here, we explore lamin A/C in a mouse model of IBD. Adoptive transfer to Rag1-/- mice of Lmna-/- CD4+ T-cells, which have enhanced regulatory T-cells (Treg) differentiation and function, induced less severe IBD than wild-type T-cells. Lamin A/C deficiency in CD4+ T-cells enhanced transcription of the Treg master regulator FOXP3, thus promoting Treg differentiation, and reduced Th1 polarization, due to epigenetic changes in the Th1 master regulator T-bet. In mesenteric lymph nodes, retinoic acid (RA) released by CD103+ dendritic cells downregulated lamin A/C in CD4+ T-cells, enhancing Treg differentiation. However, non-RA-producing CD103- dendritic cells predominated in peripheral lymph nodes, facilitating lamin A/C expression in CD4+ T-cells and therefore Th1 differentiation. Our findings establish lamin A/C as a key regulator of Th differentiation in physiological conditions and show it as a potential immune-regulatory target in IBD. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Diferenciação Celular , Colite/prevenção & controle , Colo/metabolismo , Lamina Tipo A/deficiência , Linfócitos T Reguladores/metabolismo , Células Th1/metabolismo , Transferência Adotiva , Animais , Colite/imunologia , Colite/metabolismo , Colite/patologia , Colo/imunologia , Colo/patologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Lamina Tipo A/genética , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos Knockout , Transdução de Sinais , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante , Células Th1/imunologia , Tretinoína/metabolismo
6.
J Mol Cell Cardiol ; 132: 154-163, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31121182

RESUMO

The CC chemokine 1 (CCL1, also called I-309 or TCA3) is a potent chemoattractant for leukocytes that plays an important role in inflammatory processes and diseases through binding to its receptor CCR8. Here, we investigated the role of the CCL1-CCR8 axis in atherosclerosis. We found increased expression of CCL1 in the aortas of atherosclerosis-prone fat-fed apolipoprotein E (Apoe)-null mice; moreover, in vitro flow chamber assays and in vivo intravital microscopy demonstrated an essential role for CCL1 in leukocyte recruitment. Mice doubly deficient for CCL1 and Apoe exhibited enhanced atherosclerosis in aorta, which was associated with reduced plasma levels of the anti-inflammatory interleukin 10, an increased splenocyte Th1/Th2 ratio, and a reduced regulatory T cell (Treg) content in aorta and spleen. Reduced Treg recruitment and aggravated atherosclerosis were also detected in the aortas of fat-fed low-density lipoprotein receptor-null mice treated with CCR8 blocking antibodies. These findings demonstrate that disruption of the CCL1-CCR8 axis promotes atherosclerosis by inhibiting interleukin 10 production and Treg recruitment and function.


Assuntos
Aterosclerose/imunologia , Quimiocina CCL1/imunologia , Receptores CCR8/imunologia , Linfócitos T Reguladores/imunologia , Animais , Apolipoproteínas E/imunologia , Citocinas/imunologia , Inflamação/imunologia , Interleucina-10/imunologia , Leucócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th1/imunologia , Células Th2/imunologia
7.
J Vis Exp ; (138)2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30199029

RESUMO

Quantification of naïve CD4 T cell activation, proliferation, and differentiation to T helper 1 (Th1) cells is a useful way to assess the role played by T cells in an immune response. This protocol describes the in vitro differentiation of bone marrow (BM) progenitors to obtain granulocyte macrophage colony-stimulating factor (GM-CSF) derived-dendritic cells (DCs). The protocol also describes the adoptive transfer of ovalbumin peptide (OVAp)-loaded GM-CSF-derived DCs and naïve CD4 T cells from OTII transgenic mice in order to analyze the in vivo activation, proliferation, and Th1 differentiation of the transferred CD4 T cells. This protocol circumvents the limitation of purely in vivo methods imposed by the inability to specifically manipulate or select the studied cell population. Moreover, this protocol allows studies in an in vivo environment, thus avoiding alterations to functional factors that may occur in vitro and including the influence of cell types and other factors only found in intact organs. The protocol is a useful tool for generating changes in DCs and T cells that modify adaptive immune responses, potentially providing important results to understand the origin or development of numerous immune associated diseases.


Assuntos
Células da Medula Óssea/metabolismo , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Células Th1/imunologia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Camundongos
8.
Cell Death Dis ; 9(1): 9, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311549

RESUMO

Differentiation of naive CD4+ T-cells into functionally distinct T helper (Th) subsets is critical to immunity against pathogen infection. Little is known about the role of signals emanating from the nuclear envelope for T-cell differentiation. The nuclear envelope protein lamin A/C is induced in naive CD4+ T-cells upon antigen recognition and acts as a link between the nucleus and the plasma membrane during T-cell activation. Here we demonstrate that the absence of lamin A/C in naive T-cell reduces Th1 differentiation without affecting Th2 differentiation in vitro and in vivo. Moreover, Rag1 -/- mice reconstituted with Lmna -/- CD4+CD25 - T-cells and infected with vaccinia virus show weaker Th1 responses and viral removal than mice reconstituted with wild-type T-cells. Th1 responses and pathogen clearance upon Leishmania major infection were similarly diminished in mice lacking lamin A/C in the complete immune system or selectively in T-cells. Lamin A/C mediates Th1 polarization by a mechanism involving T-bet and IFNγ production. Our results reveal a novel role for lamin A/C as key regulator of Th1 differentiation in response to viral and intracellular parasite infections.


Assuntos
Lamina Tipo A/genética , Leishmaniose Cutânea/patologia , Células Th1/metabolismo , Vacínia/patologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Suscetibilidade a Doenças , Sistema Imunitário/metabolismo , Interferon gama/metabolismo , Interleucina-4/metabolismo , Lamina Tipo A/deficiência , Leishmania major/patogenicidade , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/veterinária , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Proteínas com Domínio T/metabolismo , Células Th1/citologia , Células Th1/imunologia , Vacínia/imunologia , Vacínia/veterinária , Vaccinia virus/patogenicidade
9.
Mol Cell Biol ; 37(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28533221

RESUMO

Antigen presentation by dendritic cells (DCs) stimulates naive CD4+ T cells, triggering T cell activation and the adaptive arm of the immune response. Newly synthesized major histocompatibility complex class II (MHC-II) molecules accumulate at MHC-II-enriched endosomal compartments and are transported to the plasma membrane of DCs after binding to antigenic peptides to enable antigen presentation. In DCs, MHC-II molecules are included in tetraspanin-enriched microdomains (TEMs). However, the role of tetraspanin CD9 in these processes remains largely undefined. Here, we show that CD9 regulates the T cell-stimulatory capacity of granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent bone marrow-derived DCs (BMDCs), without affecting antigen presentation by fms-like tyrosine kinase 3 ligand (Flt3L)-dependent BMDCs. CD9 knockout (KO) GM-CSF-dependent BMDCs, which resemble monocyte-derived DCs (MoDCs), induce lower levels of T cell activation than wild-type DCs, and this effect is related to a reduction in MHC-II surface expression in CD9-deficient MoDCs. Importantly, MHC-II targeting to the plasma membrane is largely impaired in immature CD9 KO MoDCs, in which MHC-II remains arrested in acidic intracellular compartments enriched in LAMP-1 (lysosome-associated membrane protein 1), and MHC-II internalization is also blocked. Moreover, CD9 participates in MHC-II trafficking in mature MoDCs, regulating its endocytosis and recycling. Our results demonstrate that the tetraspanin CD9 specifically regulates antigenic presentation in MoDCs through the regulation of MHC-II intracellular trafficking.


Assuntos
Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Monócitos/imunologia , Tetraspanina 29/imunologia , Animais , Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Movimento Celular , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Deleção de Genes , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Ativação Linfocitária , Proteínas de Membrana/imunologia , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/metabolismo , Transporte Proteico , Tetraspanina 29/genética
10.
J Proteomics ; 89: 112-23, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23747394

RESUMO

We report the proteomic analysis of the Atlantic bushmaster, Lachesis muta rhombeata, from Brazil. Along with previous characterization of the venom proteomes of L. stenophrys (Costa Rica), L. melanocephala (Costa Rica), L. acrochorda (Colombia), and L. muta muta (Bolivia), the present study provides the first overview of the composition and distribution of venom proteins across this wide-ranging genus, and highlights the remarkable similar compositional and pharmacological profiles across Lachesis venoms. The paraspecificity of two antivenoms, produced at Instituto Vital Brazil (Brazil) and Instituto Clodomiro Picado (Costa Rica) using different conspecific taxa in the immunization mixtures, was assessed using genus-wide comparative antivenomics. This study confirms that the proteomic similarity among Lachesis sp. venoms is mirrored in their high immunological conservation across the genus. The clinical and therapeutic consequences of genus-wide venomics and antivenomics investigations of Lachesis venoms are discussed. BIOLOGICAL SIGNIFICANCE: The proteomics characterization of L. m. rhombeata venom completes the overview of Lachesis venom proteomes and confirms the remarkable toxin profile conservation across the five clades of this wide-ranging genus. Genus-wide antivenomics showed that two antivenoms, produced against L. stenophrys or L. m. rhombeata, exhibit paraspecificity towards all other congeneric venoms. Our venomics study shows that, despite the broad geographic distribution of the genus, monospecific antivenoms may achieve clinical coverage for any Lachesis sp. envenoming.


Assuntos
Antivenenos , Venenos de Crotalídeos , Proteoma , Viperidae , Animais , Antivenenos/química , Antivenenos/genética , Antivenenos/imunologia , Venenos de Crotalídeos/química , Venenos de Crotalídeos/genética , Venenos de Crotalídeos/imunologia , Cavalos , Proteoma/química , Proteoma/genética , Proteoma/imunologia , Especificidade da Espécie , Viperidae/genética , Viperidae/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA