Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 16(1): 89-117, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26741054

RESUMO

Habitability is a widely used word in the geoscience, planetary science, and astrobiology literature, but what does it mean? In this review on habitability, we define it as the ability of an environment to support the activity of at least one known organism. We adopt a binary definition of "habitability" and a "habitable environment." An environment either can or cannot sustain a given organism. However, environments such as entire planets might be capable of supporting more or less species diversity or biomass compared with that of Earth. A clarity in understanding habitability can be obtained by defining instantaneous habitability as the conditions at any given time in a given environment required to sustain the activity of at least one known organism, and continuous planetary habitability as the capacity of a planetary body to sustain habitable conditions on some areas of its surface or within its interior over geological timescales. We also distinguish between surface liquid water worlds (such as Earth) that can sustain liquid water on their surfaces and interior liquid water worlds, such as icy moons and terrestrial-type rocky planets with liquid water only in their interiors. This distinction is important since, while the former can potentially sustain habitable conditions for oxygenic photosynthesis that leads to the rise of atmospheric oxygen and potentially complex multicellularity and intelligence over geological timescales, the latter are unlikely to. Habitable environments do not need to contain life. Although the decoupling of habitability and the presence of life may be rare on Earth, it may be important for understanding the habitability of other planetary bodies.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Planetas
2.
J Geophys Res Planets ; 120(3): 495-514, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26690960

RESUMO

The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. KEY POINTS: First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition.

3.
J Geophys Res Planets ; 119(9): 2132-2147, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26213667

RESUMO

The Mars Science Laboratory (MSL) made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity (REMS-H), and UV measurements. We concentrate on describing the REMS-H measurement performance and initial observations during the first 100 MSL sols as well as constraining the REMS-H results by comparing them with earlier observations and modeling results. The REMS-H device is based on polymeric capacitive humidity sensors developed by Vaisala Inc., and it makes use of transducer electronics section placed in the vicinity of the three humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The final relative humidity results appear to be convincing and are aligned with earlier indirect observations of the total atmospheric precipitable water content. The water mixing ratio in the atmospheric surface layer appears to vary between 30 and 75 ppm. When assuming uniform mixing, the precipitable water content of the atmosphere is ranging from a few to six precipitable micrometers. KEY POINTS: Atmospheric water mixing ratio at Gale crater varies from 30 to 140 ppmMSL relative humidity observation provides good dataHighest detected relative humidity reading during first MSL 100 sols is RH75.

4.
Phys Rev Lett ; 100(14): 146102, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18518053

RESUMO

We describe an aerosol-liquid cycle that launches the autocatalytic amplification of any initial imbalance of the order of 10(-7)% (1 ppb) up to total chiral purity in a single step process. Crystal nucleation of NaClO3 is initiated at the aerosol air-water interface where, due to the accumulation of ambient chiral impurities or added hydrophobic chiral aminoacids in tiny concentrations (ppb), the initial levorotatory (l) and dextrorotatory (d) excess will not be produced with equal probability. The enantiomeric yield is then enhanced up to homochirality by recycling the crystallites through a liquid phase. In the absence of added catalysts this process leads to preferential (d) homochiral crystallizations in a ratio of 4:1 which is due to ambient contamination. By adding only 2 ppb of (L) or (D) Phe, we induce a final preferential homochiral crystallization of (d) or (l) handedness, respectively, in a ratio of 2:1.


Assuntos
Cloratos/química , Água/química , Aerossóis/química , Aminoácidos/química , Catálise , Cristalização , Interações Hidrofóbicas e Hidrofílicas , Estereoisomerismo
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(6 Pt 2): 066109, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16906916

RESUMO

We derive exact Langevin-type equations governing quasispecies dynamics. The inherent multiplicative noise has both real and imaginary parts. The numerical simulation of the underlying complex stochastic partial differential equations is carried out employing the Cholesky decomposition for the noise covariance matrix. This noise produces unavoidable spatiotemporal density fluctuations about the mean-field value. In two dimensions, the fluctuations are suppressed only when the diffusion time scale is much smaller than the amplification time scale for the master species.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(5 Pt 2): 057102, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17280023

RESUMO

We study an autocatalytic reaction-diffusion scheme, the Gray-Scott model, when the mixing processes do not homogenize the reactants. Starting from the master equation, we derive the resulting coupled, nonlinear, stochastic partial differential equations that rigorously include the spatiotemporal fluctuations resulting from the interplay between the reaction and mixing processes. The fields are complex and depend on correlated complex noise terms. We implement a method to solve for these complex fields numerically and extract accurate information about the system evolution and stationary states under different mixing regimes. Through this example, we show how the reaction-induced fluctuations interact with the temporal nonlinearities, leading to results that differ significantly from the mean-field (perfectly mixed) approach. This procedure can be applied to an arbitrary nonlinear reaction diffusion scheme.

7.
J Chem Phys ; 122(21): 214701, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15974756

RESUMO

The influence that intrinsic local-density fluctuations can have on solutions of mean-field reaction-diffusion models is investigated numerically by means of the spatial patterns arising from two species that react and diffuse in the presence of strong internal reaction noise. The dynamics of the Gray-Scott (GS) model [P. Gray and S. K. Scott, Chem. Eng. Sci. 38, 29 (1983); and ibid.39, 1087 (1984); and J. Phys. Chem. 89, 22 (1985)] with a constant external source is first cast in terms of a continuum field theory representing the corresponding master equation. We then derive a Langevin description of the field theory and use these stochastic differential equations in our simulations. The nature of the multiplicative noise is specified exactly without recourse to assumptions and turns out to be of the same order as the reaction itself, and thus cannot be treated as a small perturbation. Many of the complex patterns obtained in the absence of noise for the GS model are completely obliterated by these strong internal fluctuations, but we find novel spatial patterns induced by this reaction noise in the regions of parameter space that otherwise correspond to homogeneous solutions when fluctuations are not included.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(3 Pt 1): 031908, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15903460

RESUMO

A new experimental colonial pattern and pattern transition observed in E. coli MG1655 swarming cells grown on semisolid agar are described. We present a reaction-diffusion model that, taking into account the slime generated by these cells and its influence on the bacterial differentiation and motion, reproduces the pattern and successfully predicts the observed changes when the colonial collective motility is limited. In spite of having small nonhyperflagellated swarming cells, under these experimental conditions E. coli MG1655 can very rapidly colonize a surface, with a low branching rate, thanks to a strong fluid production and a locally incremented density of motile, lubricating cells.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/citologia , Escherichia coli/fisiologia , Modelos Biológicos , Myxococcales/citologia , Myxococcales/fisiologia , Aderência Bacteriana/fisiologia , Biomassa , Proliferação de Células , Contagem de Colônia Microbiana/métodos , Simulação por Computador , Difusão , Reconhecimento Automatizado de Padrão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA