Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 13(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36292635

RESUMO

Variants of the MYH7 gene have been associated with a number of primary cardiac conditions, including left ventricular noncompaction cardiomyopathy (LVNC). Most cases of MYH7-related diseases are associated with such variant types as missense substitutions and in-frame indels. Thus, truncating variants in MYH7 (MYH7tv) and associated mechanism of haploinsufficiency are usually considered not pathogenic in these disorders. However, recent large-scale studies demonstrated evidence of the significance of MYH7tv for LVNC and gave rise to an assumption that haploinsufficiency may be the causal mechanism for LVNC. In this article, we present a family with isolated LVNC and a heterozygous splice variant of the MYH7 gene, analyze possible consequences of this variant and conclude that not all variants that are predicted truncating really act through haploinsufficiency. This study can highlight the importance of a precise assessment of MYH7 splicing variants and their participation in the development of LVNC.


Assuntos
Cardiomiopatias , Miocárdio Ventricular não Compactado Isolado , Humanos , Miocárdio Ventricular não Compactado Isolado/genética , Mutação , Coração , Mutação de Sentido Incorreto , Cadeias Pesadas de Miosina/genética , Miosinas Cardíacas/genética
2.
Dis Model Mech ; 12(4)2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31028078

RESUMO

Exon skipping is a promising strategy for Duchenne muscular dystrophy (DMD) disease-modifying therapy. To make this approach safe, ensuring that excluding one or more exons will restore the reading frame and that the resulting protein will retain critical functions of the full-length dystrophin protein is necessary. However, in vivo testing of the consequences of skipping exons that encode the N-terminal actin-binding domain (ABD) has been confounded by the absence of a relevant animal model. We created a mouse model of the disease recapitulating a novel human mutation, a large de novo deletion of exons 8-34 of the DMD gene, found in a Russian DMD patient. This mutation was achieved by deleting exons 8-34 of the X-linked mouse Dmd gene using CRISPR/Cas9 genome editing, which led to a reading frame shift and the absence of functional dystrophin production. Male mice carrying this deletion display several important signs of muscular dystrophy, including a gradual age-dependent decrease in muscle strength, increased creatine kinase, muscle fibrosis and central nucleation. The degrees of these changes are comparable to those observed in mdx mice, a standard laboratory model of DMD. This new model of DMD will be useful for validating therapies based on skipping exons that encode the N-terminal ABD and for improving our understanding of the role of the N-terminal domain and central rod domain in the biological function of dystrophin. Simultaneous skipping of exons 6 and 7 should restore the gene reading frame and lead to the production of a protein that might retain functionality despite the partial deletion of the ABD.


Assuntos
Pareamento de Bases/genética , Sistemas CRISPR-Cas/genética , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Deleção de Sequência , Animais , Fenômenos Biomecânicos , Linhagem Celular , Criança , Cromatina/metabolismo , Modelos Animais de Doenças , Éxons/genética , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Músculos/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Fenótipo , RNA Guia de Cinetoplastídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA