Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e16327, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37287617

RESUMO

Purpose: Infectious skin diseases are a type of inflammatory skin lesions caused by pathogenic microorganisms. Because of the uncertainty of methodology, the skin infection model usually have low replication rate and lack of good evaluation system. We aimed to establish multi-index and comprehensive evaluation method for Staphylococcus aureus (S.aureus) skin-infection models through Analytic hierarchy process (AHP) and Delphi method, and screen high quality animal models through it. Materials and methods: Firstly, the evaluation indicators of skin infection were collected basing on literature research. The weight of the evaluation indicators were decided according to AHP and Delphi method. Then different ulcer models (mouse or rat) infected by S. aureus were selected as the research objects. Results: The evaluation indicators were classified into four groups of criteria (including ten sub-indicators) and given different weights, physical sign changes (0.0518), skin lesion appearance (0.2934), morphological observation (0.3184), etiological examination (0.3364). Through the evaluation system, we screened and found that the mouse ulcer model which caused by a round wound and 1.0 × 1010 CFU/mL (0.1 mL) bacterial concentration got the highest comprehensive score, and also found that the model which caused by a 1.5 cm-round wound and 1.0 × 1010 CFU/mL (0.2 mL) maybe the best rat ulcer model. Conclusions: This study has established an evaluation system based on AHP and Delphi method, also provided the best skin ulcer models selected by this system, the models are suitable for disease research and drug development research of skin ulcer.

2.
Hypertens Res ; 43(8): 754-764, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32472112

RESUMO

Pulmonary hypertension (PH) is responsible for premature death caused by progressive and severe heart failure. A simple, feasible, and reproducible animal model of PH is essential for the investigation of the pathogenesis and treatment of this condition. Previous studies have demonstrated that the vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitor SU5416 combined with hypoxia could establish an animal model of PH. Here, we investigated whether SU5416 itself could induce PH in rats. The effects of SU5416 treatment followed by 5 weeks of normoxia were examined. Hemodynamic measurements and histological assessments of the pulmonary vasculature and the heart were conducted to evaluate the physiological and pathophysiological characteristics of PH. Compared with the control rats, the SU5416-treated rats showed significantly increased right ventricle systolic pressure, right ventricle mass, total pulmonary vascular resistance, and total pulmonary vascular resistance index, while the cardiac output and cardiac index were substantially decreased. Moreover, the degree of occlusion and the muscularization levels of the distal small pulmonary vessels and the medial wall thickness of larger vessels (OD > 50 µm) simultaneously increased. SU5416 inhibited pulmonary vascular endothelial cell apoptosis in rats, as shown by immunostaining of cleaved caspase-3. Furthermore, changes in the right ventricle, myocardial hypertrophy, myocardial edema, myocardial necrosis, striated muscle cell atrophy, vessel muscularization, neointimal occlusion, and increased collagen deposition were observed in the SU5416 group compared with the control group. Thus, treatment with SU5416 alone plus 5 weeks of normoxia could be sufficient to induce PH in rats, which may provide a good and convenient model for future investigation of PH.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/fisiopatologia , Indóis , Pirróis , Resistência Vascular/fisiologia , Animais , Débito Cardíaco/fisiologia , Modelos Animais de Doenças , Coração/fisiopatologia , Pulmão/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
3.
Br J Pharmacol ; 177(12): 2743-2764, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31976548

RESUMO

BACKGROUND AND PURPOSE: Tetramethylpyrazine (TMP) was originally isolated from the traditional Chinese herb ligusticum and the fermented Japanese food natto and has since been synthesized. TMP has a long history of beneficial effects in the treatment of many cardiovascular diseases. Here we have evaluated the therapeutic effects of TMP on pulmonary hypertension (PH) in animal models and in patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH). EXPERIMENTAL APPROACH: Three well-defined models of PH -chronic hypoxia (10% O2 )-induced PH (HPH), monocrotaline-induced PH (MCT-PH) and Sugen 5416/hypoxia-induced PH (SuHx-PH) - were used in Sprague-Dawley rats, and assessed by echocardiography, along with haemodynamic and histological techniques. Primary cultures of rat distal pulmonary arterial smooth muscle cells (PASMCs) were used to study intracellular calcium levels. Western blots and RT-qPCR assays were also used. In the clinical cohort, patients with PAH or CTEPH were recruited. The effects of TMP were evaluated in all systems. KEY RESULTS: TMP (100 mg·kg-1 ·day-1 ) prevented rats from developing experimental PH and ameliorated three models of established PH: HPH, MCT-PH and SuHx-PH. The therapeutic effects of TMP were accompanied by inhibition of intracellular calcium homeostasis in PASMCs. In a small cohort of patients with PAH or CTEPH, oral administration of TMP (100 mg, t.i.d. for 16 weeks) increased the 6-min walk distance and improved the 1-min heart rate recovery. CONCLUSION AND IMPLICATIONS: Our results suggest that TMP is a novel and inexpensive medication for treatment of PH. Clinical trial is registered with www.chictr.org.cn (ChiCTR-IPR-14005379).


Assuntos
Hipertensão Pulmonar , Preparações Farmacêuticas , Animais , Proliferação de Células , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Monocrotalina , Miócitos de Músculo Liso , Artéria Pulmonar , Pirazinas , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA