Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 103(7): e37225, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363925

RESUMO

Fibro-adipose vascular anomaly (FAVA) is a rare and complex vascular malformation associated with persistent pain, limb contracture, and even restriction of activity. However, the pathophysiology of FAVA remains unclear. Although FAVA is a benign vascular malformation, it is highly misdiagnosed and often thus undergoing repeated surgical resection and interventional sclerotherapy, resulting in worsening of symptoms and irreversible dysfunction. Therefore, aggressive diagnosis and treatment are essential. There are several different treatment options for FAVA, including surgical resection, sclerotherapy, cryoablation, drug therapy, and physical therapy. This article reviews the clinical manifestations, pathological features, pathogenesis, and treatment methods of FAVA.


Assuntos
Fibromialgia , Doenças Vasculares , Malformações Vasculares , Humanos , Resultado do Tratamento , Malformações Vasculares/terapia , Malformações Vasculares/cirurgia , Doenças Vasculares/complicações , Fibromialgia/complicações , Dor/etiologia , Obesidade/complicações , Escleroterapia/métodos
2.
J Biomater Appl ; 37(8): 1446-1457, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36177498

RESUMO

The mechanism of action underlying the intriguing prominent bioactivity of urinary bladder matrix (UBM) for in situ tissue regeneration of soft tissue defects remains to be elucidated. It is speculated that the activity of UBM for cell adhesion, migration, and activation is inherent. The bioactivity of UBM for in situ tissue regeneration and its relation with the structure and intact soluble components of UBM were investigated in comparison to a collagen-based scaffold, PELNAC (PEL). We isolated the soluble component of the two materials with urea buffer, and evaluated the respective effect of these soluble components on the in vitro adhesion and migration of L929 fibroblasts. The spatiotemporal pattern of endogenous-cell ingrowth into the scaffolds and cell activation were investigated using a model of murine subcutaneous implantation. UBM is more capable of promoting the adhesion, migration, and proliferation of fibroblasts than PEL in a serum-independent manner. In vivo, as compared with PEL, UBM exhibits significantly enhanced activity for fast endogenous cell ingrowth and produces a more prominent pro-regenerative and pro-remodeling microenvironment by inducing the expression of TGF-ß1, VEGF, MMP-9, and murine type I collagen. Overall, our results suggest the prominent bioactivity of UBM for in situ tissue regeneration is inherent.


Assuntos
Matriz Extracelular , Bexiga Urinária , Camundongos , Animais , Bexiga Urinária/química , Matriz Extracelular/metabolismo , Alicerces Teciduais/química , Colágeno Tipo I/metabolismo , Aderências Teciduais/metabolismo , Fibroblastos
3.
Molecules ; 27(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36235270

RESUMO

Resveratrol (RSV) is a natural extract that has been extensively studied for its significant anti-inflammatory and antioxidant effects, which are closely associated with a variety of injurious diseases and even cosmetic medicine. In this review, we have researched and summarized the role of resveratrol and its different forms of action in wound healing, exploring its role and mechanisms in promoting wound healing through different modes of action such as hydrogels, fibrous scaffolds and parallel ratio medical devices with their anti-inflammatory, antioxidant, antibacterial and anti-ageing properties and functions in various cells that may play a role in wound healing. This will provide a direction for further understanding of the mechanism of action of resveratrol in wound healing for future research.


Assuntos
Antioxidantes , Cicatrização , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Hidrogéis/farmacologia , Resveratrol/farmacologia
4.
J Cell Mol Med ; 26(20): 5113-5121, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36106529

RESUMO

Disturbances or defects in the process of wound repair can disrupt the delicate balance of cells and molecules necessary for complete wound healing, thus leading to chronic wounds or fibrotic scars. Myofibroblasts are one of the most important cells involved in fibrotic scars, and reprogramming provides a potential avenue to increase myofibroblast clearance. Although myofibroblasts have long been recognized as terminally differentiated cells, recent studies have shown that myofibroblasts have the capacity to be reprogrammed into adipocytes. This review intends to summarize the potential of reprogramming myofibroblasts into adipocytes. We will discuss myofibroblast lineage tracing, as well as the known mechanisms underlying adipocyte regeneration from myofibroblasts. In addition, we investigated different changes in myofibroblast gene expression, transcriptional regulators, signalling pathways and epigenetic regulators during skin wound healing. In the future, myofibroblast reprogramming in wound healing will be better understood and appreciated, which may provide new ideas for the treatment of scarless wound healing.


Assuntos
Cicatriz , Miofibroblastos , Adipócitos/patologia , Diferenciação Celular , Cicatriz/patologia , Fibrose , Humanos , Miofibroblastos/patologia , Cicatrização
5.
Front Bioeng Biotechnol ; 10: 902894, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832407

RESUMO

Bone morphogenetic protein (BMP) pathway is essential for M2 macrophage polarization and hair-follicle neogenesis. Icariin, a flavonoid derived from Epimedium, is a mediator of the BMP pathway. Here, we develop a hydrogel formulation functionalized with icariin for regulation of macrophage polarization to accelerate wound healing and hair-follicle neogenesis. Compared to skin defects without icariin treatment, those treated with icariin+PEG hydrogel healed faster and had new hair follicles. Results in vivo showed that icariin+PEG hydrogel induced a higher level of M2 phenotypic transformation of macrophages. Moreover, icariin+PEG hydrogel significantly accelerated wound-repair process by reducing the invasion of inflammation, excessive deposition of collagen, immoderate activation of myofibroblasts, and increasing the regeneration of hair follicles. Furthermore, studies in vitro demonstrated that the icariin+PEG hydrogel induced macrophages to polarize to the M2 phenotype and dermal papilla cell to hair follicles. Finally, molecular analysis demonstrated that the icariin+PEG hydrogel increased the expression of BMP4 and Smad1/5 phosphorylation in skin wounds. These results demonstrate the therapeutic potential of icariin-containing thermosensitive hydrogels for inducing M2 macrophage polarization to accelerate wound healing and promote hair-follicle neogenesis by regulating the BMP pathway.

6.
Biomed Pharmacother ; 151: 113143, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643071

RESUMO

Wound healing is a complex and long-term process consisting of hemostasis, inflammation, proliferation, and maturation/remodeling. These four stages overlap and influence each other; they affect wound healing in different ways, and if they do not function perfectly, they may cause scarring, proliferative scarring and keloid formation. A therapeutic target affecting wound healing in multiple ways will help the healing process proceed more effectively. DPP-4/CD26 is a multifunctional dimorphic glycoprotein widely distributed on the surface of a variety of cells, including fibroblasts and keratin-forming cells. It has been found to affect periwound inflammation, re-epithelialization, extracellular matrix secretion and skin fibrosis and is a potential target for promoting wound healing and inhibiting scar formation. After presenting a brief introduction of the wound healing process and DPP-4/CD26, this paper summarizes the effects of DPP-4/CD26 on cells involved in different stages of wound healing and discusses the feasibility of DPP-4/CD26 as a multifunctional target for the treatment of wound healing and inhibition of scar formation.


Assuntos
Cicatriz , Dipeptidil Peptidase 4 , Cicatriz/patologia , Fibrose , Humanos , Inflamação/patologia , Pele , Cicatrização
7.
Cell Death Dis ; 13(6): 527, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35661105

RESUMO

Inflammation is one of the main pathological features leading to skin fibrosis and a key factor leading to the progression of skin fibrosis. Acidosis caused by a decrease in extracellular pH is a sign of the inflammatory process. Acid-sensing ion channels (ASICs) are ligand-gated ion channels on the cell membrane that sense the drop in extracellular pH. The molecular mechanisms by which skin fibroblasts are regulated by acid-sensing ion channel 3 (ASIC3) remain unknown. This study investigated whether ASIC3 is related to inflammation and skin fibrosis and explored the underlying mechanisms. We demonstrate that macrophage colony-stimulating factor (M-CSF) is a direct target of ASIC3, and ASIC3 activation promotes M-CSF transcriptional regulation of macrophages for M2 polarization. The polarization of M2 macrophages transduced by the ASIC3-M-CSF signal promotes the differentiation of fibroblasts into myofibroblasts through transforming growth factor ß1 (TGF-ß1), thereby producing an ASIC3-M-CSF-TGF-ß1 positive feedback loop. Targeting ASIC3 may be a new treatment strategy for skin fibrosis.


Assuntos
Miofibroblastos , Fator de Crescimento Transformador beta1 , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Diferenciação Celular/fisiologia , Retroalimentação , Fibroblastos/metabolismo , Fibrose , Humanos , Inflamação/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/metabolismo , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
8.
Front Immunol ; 13: 845956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371006

RESUMO

Skin fibrosis is a common pathological feature of various diseases, and few treatment strategies are available because of the molecular pathogenesis is poorly understood. The urokinase-type plasminogen activator (uPA) system is the major serine protease system, and its components uPA, urokinase plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1(PAI-1) are widely upregulated in fibrotic diseases, including hypertrophic scars, keloids, and scleroderma. Here, we found that the successful binding of uPA and uPAR activates the downstream peroxisome proliferator-activated receptor (PPAR) signalling pathway to reduce the proliferation, migration, and contraction of disease-derived fibroblasts, contributing to the alleviation of skin fibrosis. However, increased or robust upregulation of the inhibitor PAI-1 inhibits these effects, suggesting of the involvement of PAI-1 in skin fibrosis. Subsequent in vivo studies showed that uPAR inhibitors increased skin fibrosis in mouse models, while uPA agonists and PAI-1 inhibitors reversed these effects. Our findings demonstrate a novel role for the uPA system and highlights its relationships with skin fibrosis, thereby suggesting new therapeutic approaches targeting the uPA system.


Assuntos
Inibidor 1 de Ativador de Plasminogênio , Ativador de Plasminogênio Tipo Uroquinase , Animais , Células Cultivadas , Fibroblastos/metabolismo , Fibrose , Camundongos , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 272: 120970, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35124482

RESUMO

For sensitive and accurate methane (CH4) and ethane (C2H6) simultaneous detection, a near-infrared dual-gas sensing system based on wavelength modulation spectroscopy (WMS) was developed. A fiber-coupled distributed feedback (DFB) diode laser emitting at 1.684 µm was employed as light source. The scanning and modulation signals applied to the injection current of the laser were designed based on time division multiplexing (TDM) to realize the dual-gas measurement. A White cell with absorption path length of 16 m was utilized. The light intensity signal detected was processed with python based digital quadrature lock-in amplifier to obtain first and second harmonic signals. Allan deviation analysis yielded detection limits of 23.53 ppb for CH4 and 146.4 ppb for C2H6 in an average time of 100 s.

11.
J Cell Physiol ; 237(1): 169-177, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34608987

RESUMO

The loss of dermal white adipose tissue (dWAT) is vital to the formation of dermal fibrosis (DF), but the specific mechanism is not well understood. A few studies are reviewed to explore the role of dWAT in the formation of DF. Recent findings indicated that the adipocytes-to-myofibroblasts transition in dWAT reflects the direct contribution to the DF formation. While adipose-derived stem cells (ADSCs) contained in dWAT express antifibrotic cytokines, the loss of ADSCs leads to skin protection decreased, which indirectly exacerbates DF and tissue damage. Therefore, blocking or reversing the adipocytes-to-myofibroblasts transition or improving the survival of ADSCs in dWAT and the expression of antifibrotic cytokines may be an effective strategy for the treatment of DF.


Assuntos
Adipócitos , Tecido Adiposo Branco , Adipócitos/metabolismo , Tecido Adiposo , Tecido Adiposo Branco/metabolismo , Citocinas/metabolismo , Fibrose , Humanos , Miofibroblastos/metabolismo
13.
Front Cell Dev Biol ; 9: 748703, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869335

RESUMO

Purpose: To systematically analyze the overall m6A modification pattern in hyperplastic scars (HS). Methods: The m6A modification patterns in HS and normal skin (NS) tissues were described by m6A sequencing and RNA sequencing, and subsequently bioinformatics analysis was performed. The m6A-related RNA was immunoprecipitated and verified by real-time quantitative PCR. Results: The appearance of 14,791 new m6A peaks in the HS sample was accompanied by the disappearance of 7,835 peaks. The unique m6A-related genes in HS were thus associated with fibrosis-related pathways. We identified the differentially expressed mRNA transcripts in HS samples with hyper-methylated or hypo-methylated m6A peaks. Conclusion: This study is the first to map the m6A transcriptome of human HS, which may help clarify the possible mechanism of m6A-mediated gene expression regulation.

14.
Front Cell Dev Biol ; 9: 713605, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354997

RESUMO

In recent years, research on wound healing has become increasingly in-depth, but therapeutic effects are still not satisfactory. Occasionally, pathological tissue repair occurs. Influencing factors have been proposed, but finding the turning point between normal and pathological tissue repair is difficult. Therefore, we focused our attention on the most basic level of tissue repair: fibroblasts. Fibroblasts were once considered terminally differentiated cells that represent a single cell type, and their heterogeneity was not studied until recently. We believe that subpopulations of fibroblasts play different roles in tissue repair, resulting in different repair results, such as the formation of normal scars in physiological tissue repair and fibrosis or ulcers in pathological tissue repair. It is also proposed that scarless healing can be achieved by regulating fibroblast subpopulations.

15.
Front Mol Biosci ; 8: 593310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026818

RESUMO

Bone remodeling is a continuous process that maintains the homeostasis of the skeletal system, and it depends on the homeostasis between bone-forming osteoblasts and bone-absorbing osteoclasts. A large number of studies have confirmed that the Smad signaling pathway is essential for the regulation of osteoblastic and osteoclastic differentiation during skeletal development, bone formation and bone homeostasis, suggesting a close relationship between Smad signaling and bone remodeling. It is known that Smads proteins are pivotal intracellular effectors for the members of the transforming growth factor-ß (TGF-ß) and bone morphogenetic proteins (BMP), acting as transcription factors. Smad mediates the signal transduction in TGF-ß and BMP signaling pathway that affects both osteoblast and osteoclast functions, and therefore plays a critical role in the regulation of bone remodeling. Increasing studies have demonstrated that a number of Smad signaling regulators have potential functions in bone remodeling. Therefore, targeting Smad dependent TGF-ß and BMP signaling pathway might be a novel and promising therapeutic strategy against osteoporosis. This article aims to review recent advances in this field, summarizing the influence of Smad on osteoblast and osteoclast function, together with Smad signaling regulators in bone remodeling. This will facilitate the understanding of Smad signaling pathway in bone biology and shed new light on the modulation and potential treatment for osteoporosis.

16.
Opt Express ; 29(8): 11683-11692, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984944

RESUMO

We present a novel approach based on dual-sideband heterodyne phase-sensitive detection of dispersion spectroscopy to realize simultaneous measurement of the gas absorption signal and corresponding path length. The details of heterodyne phase-sensitive detection of dispersion spectroscopy are derived. A standard Mach-Zehnder intensity modulator (MZM) is adopted to generate a spectrum of a carrier and two sidebands. Phase shift of the beatnote signal generated by the two sidebands is detected to retrieve the path length as well as the gas absorption signal. The measurement range of the path length can be adapted by changing the modulation frequency. Proof-of-principle experiments are conducted with methane (CH4) as the absorber which is filled into a gas cell with a variable path length. We also utilize this approach to evaluate the path length of a White cell and meanwhile calibrate the experimental system with different concentrations of methane. The proposed method has a great potential for detecting the path length and gas absorption in multipass cells and the open path environment.

17.
J Cell Physiol ; 236(4): 2290-2297, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32830327

RESUMO

The incidence of acute and chronic wound diseases is rising due to various reasons. With complicated pathogenesis, long course, difficult treatment and high disability, wound diseases have become a major burden for patients, their families, and society. Therefore, the focus of research is to identify new ideas and methods for treatment. Fat grafting has gained increased attention because of its effectiveness in wound treatment, and further analysis has uncovered that the stem cells derived from fat may be the main factor affecting wound healing. We summarize the function of adipose stem cells and analyze their possible mechanisms in tissue repair, helping to provide new ideas for the treatment of wound healing.


Assuntos
Tecido Adiposo/transplante , Medicina Regenerativa , Transplante de Células-Tronco , Células-Tronco/metabolismo , Cicatrização , Ferimentos e Lesões/cirurgia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Diferenciação Celular , Humanos , Comunicação Parácrina , Fenótipo , Resultado do Tratamento , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
18.
Front Med (Lausanne) ; 7: 438, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974363

RESUMO

Hypertrophic scars (HS) arise from traumatic or surgical injuries and the subsequent abnormal wound healing, which is characterized by continuous and histologically localized inflammation. Therefore, inhibiting local inflammation is an effective method of treating HS. Recent insight into the role of interleukin-10 (IL-10), an important anti-inflammatory cytokine, in fibrosis has increased our understanding of the pathophysiology of HS and has suggested new therapeutic targets. This review summarizes the recent progress in elucidating the role of IL-10 in the formation of HS and its therapeutic potential based on current research. This knowledge will enhance our understanding of the role of IL-10 in scar formation and shed new light on the regulation and potential treatment of HS.

20.
Opt Express ; 28(8): 11573-11582, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403665

RESUMO

A sensitive acetylene (C2H2) sensing system based on a novel triple-row circular multi-pass cell (CMPC) was demonstrated. This CMPC has an effective optical length of 21.9 m within an extremely small volume of 100.1 mL. We utilized wavelength modulation spectroscopy (WMS) for absorption spectroscopy detection of C2H2. The distance between the two minima of the second harmonic was used to normalize the maximum value of it, which makes the time to obtain stable output for continuous detection shorten dramatically. A fiber-coupled distributed feedback (DFB) diode laser emitting at 1.5316 µm was employed as a light source. An Allan deviation analysis yielded a detection sensitivity of 76.75 ppb with a normalized noise equivalent absorption coefficient of 8.8 × 10-10 cm-1 Hz-1/2 during an average time of 340 s. With a fast stable time, reduced size and high detection sensitivity, the proposed sensing system is suitable for trace gas sensing in a weight-limited unmanned aerial vehicle (UAV) and an exhalation diagnosis for smoking test.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA