Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cancer Res ; 83(1): 59-73, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36265133

RESUMO

Somatic mutations are a major source of cancer development, and many driver mutations have been identified in protein coding regions. However, the function of mutations located in miRNA and their target binding sites throughout the human genome remains largely unknown. Here, we built detailed cancer-specific miRNA regulatory networks across 30 cancer types to systematically analyze the effect of mutations in miRNAs and their target sites in 3' untranslated region (3' UTR), coding sequence (CDS), and 5' UTR regions. A total of 3,518,261 mutations from 9,819 samples were mapped to miRNA-gene interactions (mGI). Mutations in miRNAs showed a mutually exclusive pattern with mutations in their target genes in almost all cancer types. A linear regression method identified 148 candidate driver mutations that can significantly perturb miRNA regulatory networks. Driver mutations in 3'UTRs played their roles by altering RNA binding energy and the expression of target genes. Finally, mutated driver gene targets in 3' UTRs were significantly downregulated in cancer and functioned as tumor suppressors during cancer progression, suggesting potential miRNA candidates with significant clinical implications. A user-friendly, open-access web portal (mGI-map) was developed to facilitate further use of this data resource. Together, these results will facilitate novel noncoding biomarker identification and therapeutic drug design targeting the miRNA regulatory networks. SIGNIFICANCE: A detailed miRNA-gene interaction map reveals extensive miRNA-mediated gene regulatory networks with mutation-induced perturbations across multiple cancers, serving as a resource for noncoding biomarker discovery and drug development.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Mutação , Redes Reguladoras de Genes , Regiões 3' não Traduzidas/genética
2.
J Am Heart Assoc ; 11(14): e025310, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35861821

RESUMO

Background We showed that Beclin-1-dependent autophagy protects the heart in young and adult mice that underwent endotoxemia. Herein, we compared the potential therapeutic effects of Beclin-1 activating peptide, TB-peptide, on endotoxemia-induced cardiac outcomes in young adult and aged mice. We further evaluated lipopolysaccharide (lipopolysaccharide)-induced and TB-peptide treatment-mediated alterations in myocardial metabolism. Methods and Results C57BL/6J mice that were 10 weeks and 24 months old were challenged by lipopolysaccharide using doses at which cardiac dysfunction occurred. Following the treatment of TB-peptide or control vehicle, heart contractility, circulating cytokines, and myocardial autophagy were evaluated. We detected that TB-peptide boosted autophagy, attenuated cytokines, and improved cardiac performance in both young and aged mice during endotoxemia. A targeted metabolomics assay was designed to detect a pool of 361 known metabolites, of which 156 were detected in at least 1 of the heart tissue samples. Lipopolysaccharide-induced impairments were found in glucose and amino acid metabolisms in mice of all ages, and TB-peptide ameliorated these alterations. However, lipid metabolites were upregulated in the young group but moderately downregulated in the aged by lipopolysaccharide, suggesting an age-dependent response. TB-peptide mitigated lipopolysaccharide-mediated trend of lipids in the young mice but had little effect on the aged. (Study registration: Project DOI: https://doi.org/10.21228/M8K11W). Conclusions Pharmacological activation of Beclin-1 by TB-peptide is cardiac protective in both young and aged population during endotoxemia, suggest a therapeutic potential for sepsis-induced cardiomyopathy. Metabolomics analysis suggests that an age-independent protection by TB-peptide is associated with reprograming of energy production via glucose and amino acid metabolisms.


Assuntos
Endotoxemia , Aminoácidos/metabolismo , Animais , Proteína Beclina-1/metabolismo , Citocinas/metabolismo , Glucose/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA