Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734285

RESUMO

Therapeutic resistance is an essential challenge for nanotherapeutics. Herein, a narrow bandgap RuI3 nanoplatform has been constructed firstly to synergize radiotherapy (RT), photothermal therapy (PTT), and thermoelectric dynamic therapy (TEDT) for tumor eradication. Specifically, the photothermal performance of RuI3 can ablate tumor cells while inducing TEDT. Noteworthy, the thermoelectric effect is found firstly in RuI3, which can spontaneously generate an electric field under the temperature gradient, prompting carrier separation and triggering massive ROS generation, thus aggravating oxidative stress level and effectively inhibiting HSP-90 expression. Moreover, RuI3 greatly enhances X-ray deposition owing to its high X-ray attenuation capacity, resulting in a pronounced computed tomography imaging contrast and DNA damage. In addition, RuI3 possesses both catalase-like and glutathione peroxidase-like properties, which alleviate tumor hypoxia and reduce antioxidant resistance, further exacerbating 1O2 production during RT and TEDT. This integrated therapy platform combining PTT, TEDT, and RT significantly inhibits tumor growth. STATEMENT OF SIGNIFICANCE: RuI3 nanoparticles were synthesized for the first time. RuI3 exhibited the highest photothermal properties among iodides, and the photothermal conversion efficiency was 53.38 %. RuI3 was found to have a thermoelectric effect, and the power factor could be comparable to that of most conventional thermoelectric materials. RuI3 possessed both catalase-like and glutathione peroxidase-like properties, which contributed to enhancing the effect of radiotherapy.

2.
Water Res ; 256: 121594, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615603

RESUMO

Membrane distillation (MD) has emerged as a promising technology for desalination and concentration of hypersaline brine. However, the efficient preparation of a structurally stable and salinity-resistant membrane remains a significant challenge. In this study, an amphiphobic polytetrafluoroethylene nanofibrous membrane (PTFE NFM) with exceptional resistance to scaling has been developed, using an energy-efficient method. This innovative approach avoids the high-temperature sintering treatment, only involving electrospinning with PTFE/PVA emulsion and subsequent low-temperature crosslinking and fluorination. The impact of the PVA and PTFE contents, as well as the crosslinking and subsequent fluorination on the morphology and MD performance of the NFM, were systematically investigated. The optimized PTFE NFM displayed robust amphiphobicity, boasting a water contact angle of 155.2º and an oil contact angle of 132.7º. Moreover, the PTFE NFM exhibited stable steam flux of 52.1 L·m-2·h-1 and 26.7 L·m-2·h-1 when fed with 3.5 wt % and 25.0 wt % NaCl solutions, respectively, and an excellent salt rejection performance (99.99 %, ΔT = 60 °C) in a continuous operation for 24 h, showing exceptional anti-scaling performance. It also exhibited stable anti-wetting and anti-fouling properties against surfactants (sodium dodecyl sulfate) and hydrophobic contaminants (diesel oil). These results underscore the significant potential of the PTFE nanofibrous membrane for practical applications in desalination, especially in hypersaline or polluted aqueous environments.


Assuntos
Destilação , Membranas Artificiais , Nanofibras , Politetrafluoretileno , Politetrafluoretileno/química , Nanofibras/química , Destilação/métodos , Halogenação , Purificação da Água/métodos
3.
Small ; 20(2): e2305085, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37661574

RESUMO

Lithium (Li) metal batteries are highly sought after for their exceptional energy density. However, their practical implementation is impeded by the formation of dendrites and significant volume fluctuations in Li, which stem from the uneven distribution of Li-ions and uncontrolled deposition of Li on the current collector. Here, an amino-functionalized reduced graphene oxide covered with polyacrylonitrile (PrGN) film with an electric field gradient structure is prepared to deal with such difficulties. This novel current collector serves to stabilize Li-metal anodes by regulating Li-ion flux through vertically aligned channels formed by porous polyacrylonitrile (PAN). Moreover, the amino-functionalized reduced graphene oxide (rGN) acts as a three-dimensional (3D) host, reducing nucleation overpotential and accommodating volume expansion during cycling. The combination of the insulating PAN and conducting rGN creates an electric field gradient that promotes a bottom-up mode of Li electrodeposition and safeguards the anode from interfacial parasitic reactions. Consequently, the electrodes exhibit exceptional cycle life with stable voltage profiles and minimal hysteresis under high current densities and large areal capacities.

4.
Dalton Trans ; 52(30): 10537-10544, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458233

RESUMO

Bismuth (Bi) has emerged as a promising candidate for sodium-ion battery anodes because of its unique layered crystal structure, superior volumetric capacity, and high theoretical gravimetric capacity. However, the large volume expansion and severe aggregation of Bi during the alloying/dealloying reactions are extremely detrimental to cycling stability, which seriously hinders its practical application. To overcome these issues, we propose an effective synthesis of composite materials, encapsulating Bi nanoparticles in N,S co-doped carbon nanoribbons and composites with carbon nanotubes (N,S-C@Bi/CNT), using Bi2S3 nanobelts as templates. The uniform distribution of Bi nanoparticles and the structure of carbon nanoribbons can reduce the diffusion path of ions/electrons, efficiently buffer the large volume change and prevent Bi from aggregating during cycles. As expected, the N,S-C@Bi/CNT electrode shows superior sodium storage performance in half cells, including a high specific capacity (345.3 mA h g-1 at 1.0 A g-1), long cycling stability (1000 cycles), and superior rate capability (336.0 mA h g-1 at 10.0 A g-1).

5.
Nano Lett ; 23(4): 1600-1607, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36626315

RESUMO

Metal-Organic frameworks (MOFs) are increasingly being investigated for the synthesis of carbon-supported metal-based ultrafine nanoparticles (UNPs). However, the collapse of the carbon framework and aggregation of metal particles in the pyrolysis process have severely hindered their stability and applications. Here, we report the synchronous nucleation pseudopyrolysis of MOFs to confine Fe/FeOx UNPs in intact porous carbon nanorods (IPCNs), revealed by in situ transmission electron microscopy experiments and ex situ structure analysis. The pseudopyrolysis mechanism enables strong physical and chemical confinement effects between UNPs and carbon by moderate thermal kinetics and abundant oxygen defects. Further, this strong confinement is greatly beneficial for subsequent chemical transformations to obtain different Fe-based UNPs and excellent electrochemical performance. As a proof of concept, the as-prepared FeSe UNPs in IPCNs show superior lithium storage performance with an ultrahigh and stable capacity of 815.1 mAh g-1 at 0.1 A g -1 and 379.7 mAh g-1 at 5 A g-1 for 1000 cycles.

6.
Nanomicro Lett ; 14(1): 189, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36114888

RESUMO

Catalysis has been regarded as an effective strategy to mitigate sluggish reaction kinetics and serious shuttle effect of Li-S batteries. Herein, a spherical structure consists of ultrathin layered Ti3C2Tx-TiN heterostructures (MX-TiN) through in-situ nitridation method is reported. Through controllable nitridation, highly conductive TiN layer grew on the surface and close coupled with interior MXene to form unique 2D heterostructures. The ultrathin heterostructure with only several nanometers in thickness enables outstanding ability to shorten electrons diffusion distance during electrochemical reactions and enlarge active surface with abundant adsorptive and catalytic sites. Moreover, the (001) surface of TiN is dominated by metallic Ti-3d states, which ensures fast transmitting electrons from high conductive MX-TiN matrix and thus guarantees efficient catalytic performance. Calculations and experiments demonstrate that polysulfides are strongly immobilized on MX-TiN, meanwhile the bidirectional reaction kinetics are catalytically enhanced by reducing the conversion barrier between liquid LiPSs and solid Li2S2/Li2S. As a result, the S/MX-TiN cathode achieves excellent long-term cyclability with extremely low-capacity fading rate of 0.022% over 1000 cycles and remarkable areal capacity of 8.27 mAh cm-2 at high sulfur loading and lean electrolytes.

7.
Small ; 18(41): e2203948, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36084223

RESUMO

The poor conductivity, inert charge transmission efficiency, and irreversible Na+ trapping of Na2 Ti3 O7 result in retardant electrons/ions transportation and deficient sodium-ion storage efficiency, leading to sluggish reaction kinetics. To address these issues, an urchin-like Ti2 CTx /Na2 Ti3 O7 (Ti2 C/NTO) heterostructure sphere consisting of Ti2 C/NTO heterostructure nanobelts array is developed via a facile one-step in situ hydrothermal strategy. The Ti2 C/NTO heterostructure can obviously decrease Na+ diffusion barriers and increase electronic conductivity to improve reaction kinetics due to the built-in electric field effect and high-quantity interface region. In addition, the urchin-like vertically aligned nanobelts can reduce the diffusion distance of electrons and ions, provide favored electrolyte infiltration, adapt large volume expansion, and mitigate the aggregation to maintain structural stability during cycles, further enhancing the reaction kinetics. Furthermore, the Ti2 C/NTO heterostructure can effectively suppress many unwanted side reactions between reactive surface sites of NTO and electrolyte as well as irreversible trapping of Na+ . As a result, systematic electrochemical investigations demonstrate that the Ti2 C/NTO heterostructure as an anode material for record sodium-ion storage delivers the highest reversible capacity, the best cycling stability with 0.0065% decay rate for 4500 cycles at 2.0 A g-1 , and excellent rate capability of 172.1 mAh g-1 at 10.0 A g-1 .

8.
ACS Appl Mater Interfaces ; 14(31): 35522-35533, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35882432

RESUMO

Orthorhombic niobium pentoxide (T-Nb2O5) is a promising anode to fulfill the requirements for high-rate Li-ion batteries (LIBs). However, its low electric conductivity and indistinct electrochemical mechanism hinder further applications. Herein, we develop a novel method to obtain a micrometer-sized layer structure of S-doped Nb2O5 on an S-doped graphene (SG) surface (the composite is denoted S-Nb2O5/SG) after the initial cycle, which we call "in situ electrochemically induced aggregation". In situ and ex situ characterizations and theoretical calculations were carried out to reveal the aggregation process and Li+ storage process. The unique merits of the composite with a micrometer-sized layer structure increased the reaction degree, structural stability, and electrochemical kinetics. As a result, the electrode exhibited a large capacity (∼598 mAh g-1 at 0.1 A g-1), outstanding cycling stability (∼313 mAh g-1 at 5 A g-1 and remains at ∼313 mAh g-1 after 1000 cycles), and a high Coulombic efficiency and has a high fast-charging performance and excellent cycling stability.

9.
Adv Sci (Weinh) ; 9(15): e2200394, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35322604

RESUMO

The development of highly efficient and stable oxygen reduction electrocatalysts and revealing their underlying catalytic mechanism are crucial in expanding the applications of metal-air batteries. Herein, an excellent FeCo alloy nanoparticles (NPs)-decorated N-doped mesoporous carbon electrocatalyst (FeCo/NC) for oxygen reduction reaction, prepared through the pyrolysis of a dual metal containing metal-organic framework composite scaffold is reported. Benefiting from the highly exposed bimetal active sites and the carefully designed structure, the Fe0.25 Co0.75 /NC-800 catalyst exhibits a promising electrocatalytic activity and a superior durability, better than those of the state-of-the-art catalysts. Suggested by both the X-ray absorption fine structures and the density functional theoretical calculation, the outstanding catalytic performance is originated from the synergistic effects of the bimetallic loading in NC catalysts, where the electronic modulation of the Co active sites from the nearby Fe species leads to an optimized binding strength for reaction intermediates. This work demonstrates a class of highly active nonprecious metals electrocatalysts and provides valuable insights into investigating the structure-performance relationship of transition metal-based alloy catalysts.

10.
Small Methods ; 6(4): e2101484, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35142111

RESUMO

Herein, a rational design of SnS2 nanosheets confined into bubble-like carbon nanoreactors anchored on N,S doped carbon nanofibers (SnS2 @C/CNF) is proposed to prepare the self-standing electrodes, which provides tunable void space on carbon fibers for the first time by introducing hollow carbon nanoreactors. The SnS2 @C/CNF provides the stable support with greatly enhanced ion and electron transport, alleviates aggregation and volume expansion of SnS2 nanosheets, and promotes the formation of abundant exposed edges and active sites. The volume balance between SnS2 nanosheets and hollow carbon nanoreactors is reached to accommodate the expansion of SnS2 during cycles by controlling the thickness of SnO2 shells, which achieves the best space utilization. The doping of N,S elements enhances the wettability of the carbon nanofiber matrix to electrolyte and Li ions and further improves the electrical conductivity of the whole electrode. Thus, the SnS2 @C/CNF benefits greatly in structural stability and pseudocapacitive capacity for improved lithium/sodium storage performance. As a result of these improvements, the self-standing SnS2 @C/CNF film electrodes exhibit the highly stable capacity of 964.8 and 767.6 mAh g-1 at 0.2 A g-1 , and excellent capacity retention of 87.4% and 82.4% after 1000 cycles at high current density for lithium-ion batteries and sodium-ion batteries, respectively.

11.
Small ; 18(7): e2105866, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34878213

RESUMO

A nitrogen-doped carbon bubble-carbon nanotube@red phosphorus (N-CBCNT@rP) network composite is fabricated, featuring an rP film embedded in a highly N-doped CBCNT network with hierarchical pores of different sizes and interior void spaces. Highly N-doped CBCNT with an optimized structure is utilized to achieve an ultrahigh rP content of 53 wt% in the N-CBCNT@rP composite by the NP bond, which shows a record rP content for rP-carbon composites by the vaporization-condensation process. When tested as an anode for lithium-ion batteries, the N-CBCNT@rP composite exhibits an ultrahigh initial Coulombic efficiency of 87.5%, high specific capacity, outstanding rate performance, and superior cycling stability at a high current density (capacity decay of 0.011% per cycle over 1500 cycles at 5 A g-1 ), which is the lowest capacity fading rate of those previously reported for rP-based electrodes. The superior lithium-ion storage performance of the N-CBCNT@rP composite electrode is primarily attributed to its structure. The 3D hierarchical conducting network of the N-CBCNT@rP composite with abundant N-P bonds endows the entire electrode with maximized conductivity for superior ion and electron transfer kinetics. Moreover, N-CBCNT networks with hierarchical pores of different sizes can fix the location of rP, prevent agglomeration, and avoid volume expansion of rP.

12.
Dalton Trans ; 50(47): 17538-17548, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34812456

RESUMO

Aqueous zinc-ion batteries (ZIBs) are emerging as promising alternatives among various energy storage devices. However, the lack of research on cathode materials with both high capacity and electrochemical stability restricts widespread applications of ZIBs. Herein, surface chemical reconstruction and partial phosphorization strategies are employed to synthesize MOF-derived hierarchical CoO/Ni2P-Co2P nanosheet arrays on Ni foam substrates as cathodes for ZIBs. The unique hierarchical nanostructure and multiple components with exposed surfaces and rich oxygen vacancies accelerate charge transfer and ion diffusion, expose more active sites, and promote the accessibility between the active materials and electrolyte. The oxide/phosphide composites obtained by novel partial phosphorization achieve a common improvement of performance and stability. As expected, the CoO/Ni2P-Co2P electrode delivers a high specific capacity (370.4 mA h g-1 at 3 A g-1) and excellent rate performance (63.3% retention after a six-fold increase in the current density). Moreover, when employed as the cathode of the CoO/Ni2P-Co2P-30//Zn battery, the assembled battery exhibits a superior specific capacity (322.8 mA h g-1 at 2 A g-1), a long cycle life (104.9% retention after 6000 cycles), a favorable energy density (547.5 W h kg-1) and power density (9.7 kW kg-1). Therefore, this study provides a suitable candidate which meets the requirements of high-performance cathode materials for ZIBs.

13.
Small ; 17(45): e2104186, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34622576

RESUMO

NiS1.23 Se0.77 nanosheets closely attached to the internal surface of hollow mesoporous carbon sphere (HMCS) to form a NiS1.23 Se0.77 nanosheets embedded in HMCS (NSSNs@HMCS) composite as the anode of sodium ion batteries (SIBs) is reported by a facile synthesis route. The anode exhibits a superior reversible capacity (520 mAh g-1 at 0.1 A g-1 ), impressive coulombic efficiency (CE) of up to 95.3%, a high rate capacity (353 mAh g-1 at 5.0 A g-1 ), excellent capacity retention at high current density (95.6%), and high initial coulombic efficiency (ICE) (95.1%). Firstly, the highest ICE for NiS2 /NiSe2 -based anode can be ascribed to ultrathin layered structure of NiS1.23 Se0.77 nanosheet and highly efficient electron transfer between the active material and HMCS. Secondly, the optimized NiS2 /NiSe2 heterostructure at the nanoscale of the inside HMCS is formed after the first discharge/charge cycles, which can provide rich heterojunction interfaces/boundaries of sulfide/selenides to offer faster Na+ pathways, decrease the Na+ diffusion barriers, increase electronic conductivity, and limit the dissolution of polysulfides or polyselenides in the electrolyte. Finally, the hollow structure of the HMCS accommodates the volume expansion, prevents the pulverization and aggregation issues of composite materials, which can also promote outstanding electrochemical performance.

14.
Dalton Trans ; 50(33): 11458-11465, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34346462

RESUMO

Cobalt selenides based on the conversion reaction have been widely applied in lithium-ion batteries (LIBs) due to their high conductivity and high specific capacity. However, effectively suppressing the fast capacity fade caused by the irreversible Se/Co dissolution and serious volume change during the cycling process is still a challenge. Herein, a facile and efficient self-generated sacrificial template method is used to prepare Co0.85Se nanoparticles encapsulated in the inner wall of N-doped carbon matrix nanotubes (Co0.85Se@NCMT). In this strategy, the formation of stable Co-N/C and Se-C as well as enhancing the mechanical strength between active materials and N-doped carbon matrix nanotubes can critically affect the performance through suppressing the dissolution of Se/Co, decreasing energy band, promoting the shuttling of the ions/e- moving and mitigating the volume expansion during the charge-discharge process, which play a key role in improving the structure stability and electrochemical performance. Besides, Co0.85Se nanoparticles encapsulated in the robust carbon matrix inner wall can ensure good electron transfer and prevent the aggregation of nanoparticles, leading to superior electrochemical reversibility. Finally, carbon matrix nanotubes can provide sufficient space to effectively accommodate the volume changes of encapsulated Co0.85Se nanoparticles, thereby improving the cyclic stability. Based on the above advantages, as expected, the electrochemical investigations exhibited that the Co0.85Se@NCMT anode performs a stable reversible capacity of 462.9 mA h g-1 at a large current density of 5 A g-1 and a remarkable capacity retention of 99.5% after 800 cycles, suggesting its promising potential for the anode of LIBs.

15.
Adv Healthc Mater ; 10(6): e2001665, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33326189

RESUMO

Rational design of nanosystems that target tumor microenvironment have attracted widespread attention. However, it is still a great challenge to make a multifunctional nanoplatform that actively and selectively interacts with tumor microenvironment, without causing toxicity to surrounding normal tissues. Herein, the biodegradable Fe-doped MoOx (FMO) nanowires are designed as an anti-tumor nanoreagent that possesses great photothermal conversion ability (48.5%) and magnetic properties for T1 weighted magnetic resonance imaging (MRI). Also, FMO can be used as a chemodynamic therapy (CDT) reagent to effectively catalyze the decomposition of H2 O2 and produce hydroxyl radical (·OH). At the same time, the consumption of glutathione will also enhance the CDT effect. More importantly, FMO presents pH-dependent degradation behavior: rapid degradation at physiological pH, but relatively stable at acidic pH. In vivo anti-tumor experiment demonstrates that the FMO is able to effectively inhibit the tumor growth with minimal side effects. Generally speaking, these results indicate that the FMO has huge potential for MRI image-guided cancer therapy and promotes the clinical translation of nanodrugs.


Assuntos
Nanofios , Microambiente Tumoral , Linhagem Celular Tumoral , Glutationa , Células HeLa , Humanos , Imageamento por Ressonância Magnética
16.
Adv Sci (Weinh) ; 7(18): 1903045, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32999824

RESUMO

SnS, is a promising anode material for lithium ion batteries (LIBs) and sodium ion batteries (SIBs), however, undergoes poor cyclic lifespan due to its huge volume changes and bad electroconductivity. Here, a modified CVD method is used to directly grow graphene-like carbon film on the surface of SnS nanosheet arrays which are supported by Co-, N-modified porous carbon fibers (CCF@SnS@G). In the strategy, the SnS nanosheet arrays confined into the integrated carbon matrix containing porous carbon fibers and graphene-like carbon film, perform a greatly improved electrochemical performance. In situ TEM experiments reveal that the vertical graphene-like carbon film can not only protect the SnS nanosheet from destruction well and enhance the conductivity, but also transforms SnS nanosheet into ultrafine nanoparticles to promote the electrochemical kinetics. Systematic electrochemical investigations exhibit that the CCF@SnS@G electrode delivers a stable reversible capacity of 529 mAh g-1 at a high current density of 5 A g-1 for LIBs and 541.4 mAh g-1 at 2 A g-1 for SIBs, suggesting its good potential for anode electrodes.

17.
Dalton Trans ; 49(20): 6876-6883, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32392275

RESUMO

Herein, a simple approach was developed to fabricate novel NiCo2O4 hollow nanoflowers (NCOHFs), which were explored as a sulfur carrier material for lithium-sulfur (Li-S) batteries. Remarkably, the capacity of the NCOHF/S composite electrode was ∼666.8 mA h g-1 in the fourth cycle, which was maintained at ∼432.9 mA h g-1 in the 400th cycle under a current density of 1.0C, with a low decay rate of 0.087% per cycle. The overall outstanding properties of the NCOHF/S composite are attributed to the successful new strategy in structural design via in situ and ex situ procedures. Firstly, NCOHF with bifunctional catalytic activity and chemical adsorption can efficiently promote the redox reactions of lithium polysulfides (LiPSs) and suppress the diffusion of polysulfides. Secondly, NCOHF with inherently high electronic conductivity acts as a conduit to accelerate the transport of electrons and ions. Thirdly, the flower-like NiCo2O4 nanosheets are anchored tightly to the conductive carbon and binder during the Li+ insertion and extraction processes, which can effectively suppress the aggregation of the NCOHF/S composite during cycling. Finally, the hollow space inside the NCOHF/S composite provides sufficient free space for the expansion of encapsulated pure sulfur.

18.
Nanoscale ; 12(20): 11288-11296, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32420577

RESUMO

Ternary I-III-VI2 semiconductors usually have narrow band gaps and large absorption coefficients arising from the unique characteristics of their outer-d valence electrons, which are intimately connected with the photothermal conversion properties. AgFeS2 is known as one such material that has the potential to absorb near-infrared light. In this work, we utilized density functional theory (DFT) calculations to evaluate the electronic structure and optical absorption properties of AgFeS2. Strong absorptions were predicted over a wide Vis-NIR region due to the localized 3d electron of Fe atoms, which agree quite well with the UV-Vis-NIR spectra measured by experiment. The as-prepared AgFeS2 nanoparticles were then modified with mPEG-DSPE, an efficient photothermal agent for artery stenosis therapy. Its photothermal conversion effect has been systematically studied, indicating the potential for causing the hyperthermia of macrophages, an essential part of the artery inflammation response. More importantly, both in vitro cell experiments and in vivo mouse-model studies show that the induction of hyperthermia in artery stenosis by using AgFeS2 nanoparticles is safe and effective when injected at a very low concentration. This study provides a novel photothermal platform derived from the inheritability of bandgap structure and also promotes the process of artery inflammation and stenosis therapy.


Assuntos
Aterosclerose/terapia , Ferro , Nanopartículas , Terapia Fototérmica , Prata , Sulfetos , Animais , Constrição Patológica/terapia , Ferro/química , Ferro/farmacologia , Masculino , Camundongos , Camundongos Knockout para ApoE , Nanopartículas/química , Nanopartículas/uso terapêutico , Células RAW 264.7 , Prata/química , Prata/farmacologia , Sulfetos/química , Sulfetos/farmacologia
19.
Dalton Trans ; 49(17): 5636-5645, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32285058

RESUMO

Bismuth is a promising candidate for next generation lithium-ion battery anodes; however, the unstable structure of Bi during delithiation and lithiation processes leads to poor cycling performance. Here, a BiPO4@void@C/CNT composite is prepared using a template by corrosion and calcination methods. The composite has a uniform structure, where BiPO4 is converted into Bi nanoparticles embedded within the Li3PO4 matrix by the first discharge process inside the C/CNT hollow structures. The Li3PO4 matrix can not only serve as a buffer layer to maintain the structural integrity during insertion/extraction processes, but also provides an electrolyte-blocking layer that limits the formation of the SEI layer on the surfaces of most of the Bi nanoparticles. Moreover, the CNTs on the surface of BiPO4@void@C offer an interconnected electron transportation pathway and also effectively prevent aggregation and separation of the active materials. In addition, the hollow porous structure provides sufficient free voids for expansion of the Bi/Li3PO4 matrix nanorods. As an anode for LIBs, BiPO4@void@C/CNT after rating performance testing delivers a high capacity of ∼347.0 mA h g-1 at a high current density of 1000 mA g-1 that is maintained for 530 cycles without capacity loss.

20.
Dalton Trans ; 49(17): 5493-5502, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32266911

RESUMO

Heat therapy is a promising therapeutic modality for cancer treatment due to the minimum adverse effects of selective local hyperthermia; however, the low heating efficiency of heat therapy under safe conditions is an issue for its bioapplication. Here, we report the synthesis of water-dispersible sulfur doped iron oxides (SDIOs) with different phase structures and the exploration of the relationships between the different SDIOs and their induction heating capacities as a guideline to obtain a photo-magnetic hyperthermia agent. The agent exhibits good biocompatibility, excellent photothermal conversion efficiency (55.8%) and great T2 weighted magnetic resonance imaging (63.7 mM-1 s-1). Significantly, the SDIOs effectively eliminate tumours in a biologically safe AC magnetic field range (H·f = 4.3 < 5.0 × 106 kA m-1 s-1) and with 808 nm laser irradiation at a safe density of 0.33 W cm-2; also, they can be mostly metabolized from the body after one month. The work presented here adopts anion-doped iron oxides to dramatically improve photo-magnetic hyperthermia effects and may enable further exploration in thermotherapeutic research.


Assuntos
Compostos Férricos/química , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética , Fototerapia/métodos , Segurança , Enxofre/química , Animais , Células HeLa , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA