Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Cell Rep Med ; : 101588, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38781961

RESUMO

Tibial cortex transverse distraction is a surgical method for treating severe diabetic foot ulcers (DFUs), but the underlying mechanism is unclear. We show that antioxidant proteins and small extracellular vesicles (sEVs) with multiple-tissue regenerative potential are released during bone transport (BT) in humans and rats. These vesicles accumulate in diabetic wounds and are enriched with microRNAs (miRNAs) (e.g., miR-494-3p) that have high regenerative activities that improve the circulation of ischemic lower limbs while also promoting neovascularization, fibroblast migration, and nerve fiber regeneration. Deletion of miR-494-3p in rats reduces the beneficial effects of BT on diabetic wounds, while hydrogels containing miR-494-3p and reduced glutathione (GSH) effectively repair them. Importantly, the ginsenoside Rg1 can upregulate miR-494-3p, and a randomized controlled trial verifies that the regimen of oral Rg1 and GSH accelerates wound healing in refractory DFU patients. These findings identify potential functional factors for tissue regeneration and suggest a potential therapy for DFUs.

2.
Cell Metab ; 36(5): 1144-1163.e7, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38574738

RESUMO

Bone secretory proteins, termed osteokines, regulate bone metabolism and whole-body homeostasis. However, fundamental questions as to what the bona fide osteokines and their cellular sources are and how they are regulated remain unclear. In this study, we analyzed bone and extraskeletal tissues, osteoblast (OB) conditioned media, bone marrow supernatant (BMS), and serum, for basal osteokines and those responsive to aging and mechanical loading/unloading. We identified 375 candidate osteokines and their changes in response to aging and mechanical dynamics by integrating data from RNA-seq, scRNA-seq, and proteomic approaches. Furthermore, we analyzed their cellular sources in the bone and inter-organ communication facilitated by them (bone-brain, liver, and aorta). Notably, we discovered that senescent OBs secrete fatty-acid-binding protein 3 to propagate senescence toward vascular smooth muscle cells (VSMCs). Taken together, we identified previously unknown candidate osteokines and established a dynamic regulatory network among them, thus providing valuable resources to further investigate their systemic roles.


Assuntos
Osteoblastos , Animais , Osteoblastos/metabolismo , Osteoblastos/citologia , Camundongos , Osso e Ossos/metabolismo , Proteômica , Camundongos Endogâmicos C57BL , Masculino , Envelhecimento/metabolismo , Humanos , Senescência Celular , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Multiômica
3.
J Extracell Vesicles ; 13(4): e12425, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594791

RESUMO

Heterotopic ossification (HO) comprises the abnormal formation of ectopic bone in extraskeletal soft tissue. The factors that initiate HO remain elusive. Herein, we found that calcified apoptotic vesicles (apoVs) led to increased calcification and stiffness of tendon extracellular matrix (ECM), which initiated M2 macrophage polarization and HO progression. Specifically, single-cell transcriptome analyses of different stages of HO revealed that calcified apoVs were primarily secreted by a PROCR+ fibroblast population. In addition, calcified apoVs enriched calcium by annexin channels, absorbed to collagen I via electrostatic interaction, and aggregated to produce calcifying nodules in the ECM, leading to tendon calcification and stiffening. More importantly, apoV-releasing inhibition or macrophage deletion both successfully reversed HO development. Thus, we are the first to identify calcified apoVs from PROCR+ fibroblasts as the initiating factor of HO, and might serve as the therapeutic target for inhibiting pathological calcification.


Assuntos
Vesículas Extracelulares , Ossificação Heterotópica , Humanos , Receptor de Proteína C Endotelial , Vesículas Extracelulares/patologia , Ossificação Heterotópica/patologia , Ossificação Heterotópica/terapia , Matriz Extracelular , Fibroblastos
4.
Dev Cell ; 59(9): 1192-1209.e6, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38554700

RESUMO

Bone is regarded as one of few tissues that heals without fibrous scar. The outer layer of the periosteum is covered with fibrous tissue, whose function in bone formation is unknown. We herein developed a system to distinguish the fate of fibrous-layer periosteal cells (FL-PCs) from the skeletal stem/progenitor cells (SSPCs) in the cambium-layer periosteum and bone marrow in mice. We showed that FL-PCs did not participate in steady-state osteogenesis, but formed the main body of fibrocartilaginous callus during fracture healing. Moreover, FL-PCs invaded the cambium-layer periosteum and bone marrow after fracture, forming neo-SSPCs that continued to maintain the healed bones throughout adulthood. The FL-PC-derived neo-SSPCs expressed lower levels of osteogenic signature genes and displayed lower osteogenic differentiation activity than the preexisting SSPCs. Consistent with this, healed bones were thinner and formed more slowly than normal bones. Thus, the fibrous periosteum becomes the cellular origin of bones after fracture and alters bone properties permanently.


Assuntos
Diferenciação Celular , Consolidação da Fratura , Fraturas Ósseas , Osteogênese , Periósteo , Animais , Periósteo/metabolismo , Camundongos , Osteogênese/fisiologia , Consolidação da Fratura/fisiologia , Fraturas Ósseas/patologia , Fraturas Ósseas/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Camundongos Endogâmicos C57BL , Calo Ósseo/metabolismo , Calo Ósseo/patologia , Masculino
5.
Nat Commun ; 15(1): 2529, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514612

RESUMO

Transcortical vessels (TCVs) provide effective communication between bone marrow vascular system and external circulation. Although osteocytes are in close contact with them, it is not clear whether osteocytes regulate the homeostasis of TCVs. Here, we show that osteocytes maintain the normal network of TCVs by transferring mitochondria to the endothelial cells of TCV. Partial ablation of osteocytes causes TCV regression. Inhibition of mitochondrial transfer by conditional knockout of Rhot1 in osteocytes also leads to regression of the TCV network. By contrast, acquisition of osteocyte mitochondria by endothelial cells efficiently restores endothelial dysfunction. Administration of osteocyte mitochondria resultes in acceleration of the angiogenesis and healing of the cortical bone defect. Our results provide new insights into osteocyte-TCV interactions and inspire the potential application of mitochondrial therapy for bone-related diseases.


Assuntos
Angiogênese , Osteócitos , Osteócitos/metabolismo , Células Endoteliais , Osso e Ossos , Mitocôndrias
6.
J Thromb Haemost ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38537781

RESUMO

BACKGROUND: Megakaryocytes (MKs) are polyploid cells responsible for producing ∼1011 platelets daily in humans. Unraveling the mechanisms regulating megakaryopoiesis holds the promise for the production of clinical-grade platelets from stem cells, overcoming significant current limitations in platelet transfusion medicine. Previous work identified that loss of the epigenetic regulator SET domain containing 2 (SETD2) was associated with an increased platelet count in mice. However, the role of SETD2 in megakaryopoiesis remains unknown. OBJECTIVES: Here, we examined how SETD2 regulated MK development and platelet production using complementary murine and human systems. METHODS: We manipulated the expression of SETD2 in multiple in vitro and ex vivo models to assess the ploidy of MKs and the function of platelets. RESULTS: The genetic ablation of Setd2 increased the number of high-ploidy bone marrow MKs. Peripheral platelet counts in Setd2 knockout mice were significantly increased ∼2-fold, and platelets exhibited normal size, morphology, and function. By knocking down and overexpressing SETD2 in ex vivo human cell systems, we demonstrated that SETD2 negatively regulated MK polyploidization by controlling methylation of α-tubulin, microtubule polymerization, and MK nuclear division. Small-molecule inactivation of SETD2 significantly increased the production of high-ploidy MKs and platelets from human-induced pluripotent stem cells and cord blood CD34+ cells. CONCLUSION: These findings identify a previously unrecognized role for SETD2 in regulating megakaryopoiesis and highlight the potential of targeting SETD2 to increase platelet production from human cells for transfusion practices.

7.
Adv Sci (Weinh) ; 11(12): e2307388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233202

RESUMO

Ferroptosis is a necrotic form of iron-dependent regulatory cell death. Estrogen withdrawal can interfere with iron metabolism, which is responsible for the pathogenesis of postmenopausal osteoporosis (PMOP). Here, it is demonstrated that estrogen withdrawal induces iron accumulation in the skeleton and the ferroptosis of osteocytes, leading to reduced bone mineral density. Furthermore, the facilitatory effect of ferroptosis of osteocytes is verified in the occurrence and development of postmenopausal osteoporosis is associated with over activated osteoclastogenesis using a direct osteocyte/osteoclast coculture system and glutathione peroxidase 4 (GPX4) knockout ovariectomized mice. In addition, the nuclear factor erythroid derived 2-related factor-2 (Nrf2) signaling pathway is confirmed to be a crucial factor in the ferroptosis of osteocytic cells. Nrf2 regulates the expression of nuclear factor kappa-B ligand (RANKL) by regulating the DNA methylation level of the RANKL promoter mediated by DNA methyltransferase 3a (Dnmt3a), which is as an important mechanism in osteocytic ferroptosis-mediated osteoclastogenesis. Taken together, this data suggests that osteocytic ferroptosis is involved in PMOP and can be targeted to tune bone homeostasis.


Assuntos
Ferroptose , Osteoporose Pós-Menopausa , Camundongos , Humanos , Animais , Feminino , Osteócitos/metabolismo , Osteoporose Pós-Menopausa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estrogênios/metabolismo , Ferro/metabolismo
8.
Cell Death Differ ; 31(1): 106-118, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38012390

RESUMO

Osteoarthritis (OA) is one of the most common joint diseases, there are no effective disease-modifying drugs, and the pathological mechanisms of OA need further investigation. Here, we show that H3K36 methylations were decreased in senescent chondrocytes and age-related osteoarthritic cartilage. Prrx1-Cre inducible H3.3K36M transgenic mice showed articular cartilage destruction and osteophyte formation. Conditional knockout Nsd1Prrx1-Cre mice, but not Nsd2Prrx1-Cre or Setd2Prrx1-Cre mice, replicated the phenotype of K36M/+; Prrx1-Cre mice. Immunostaining results showed decreased anabolic and increased catabolic activities in Nsd1Prrx1-Cre mice, along with decreased chondrogenic differentiation. Transcriptome and ChIP-seq data revealed that Osr2 was a key factor affected by Nsd1. Intra-articular delivery of Osr2 adenovirus effectively improved the homeostasis of articular cartilage in Nsd1Prrx1-Cre mice. In human osteoarthritic cartilages, both mRNA and protein levels of NSD1 and OSR2 were decreased. Our results indicate that NSD1-induced H3K36 methylations and OSR2 expression play important roles in articular cartilage homeostasis and OA. Targeting H3K36 methylation and OSR2 would be a novel strategy for OA treatment.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Humanos , Animais , Condrócitos/metabolismo , Metiltransferases/metabolismo , Osteoartrite/patologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Camundongos Transgênicos , Homeostase , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
9.
Nature ; 621(7979): 602-609, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37704733

RESUMO

Vertebral bone is subject to a distinct set of disease processes from long bones, including a much higher rate of solid tumour metastases1-4. The basis for this distinct biology of vertebral bone has so far remained unknown. Here we identify a vertebral skeletal stem cell (vSSC) that co-expresses ZIC1 and PAX1 together with additional cell surface markers. vSSCs display formal evidence of stemness, including self-renewal, label retention and sitting at the apex of their differentiation hierarchy. vSSCs are physiologic mediators of vertebral bone formation, as genetic blockade of the ability of vSSCs to generate osteoblasts results in defects in the vertebral neural arch and body. Human counterparts of vSSCs can be identified in vertebral endplate specimens and display a conserved differentiation hierarchy and stemness features. Multiple lines of evidence indicate that vSSCs contribute to the high rates of vertebral metastatic tropism observed in breast cancer, owing in part to increased secretion of the novel metastatic trophic factor MFGE8. Together, our results indicate that vSSCs are distinct from other skeletal stem cells and mediate the unique physiology and pathology of vertebrae, including contributing to the high rate of vertebral metastasis.


Assuntos
Neoplasias da Mama , Linhagem da Célula , Metástase Neoplásica , Coluna Vertebral , Células-Tronco , Humanos , Neoplasias da Mama/patologia , Diferenciação Celular , Autorrenovação Celular , Metástase Neoplásica/patologia , Osteoblastos/citologia , Osteoblastos/patologia , Coluna Vertebral/citologia , Coluna Vertebral/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Biomarcadores
10.
Adv Sci (Weinh) ; 10(29): e2303291, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37553778

RESUMO

Periodontium supports teeth in a mechanically stimulated tissue environment, where heterogenous stem/progenitor populations contribute to periodontal homeostasis. In this study, Leptin receptor+ (Lepr+) cells are identified as a distinct periodontal ligament stem cell (PDLSC) population by single-cell RNA sequencing and lineage tracing. These Lepr+ PDLSCs are located in the peri-vascular niche, possessing multilineage potential and contributing to tissue repair in response to injury. Ablation of Lepr+ PDLSCs disrupts periodontal homeostasis. Hyper-loading and unloading of occlusal forces modulate Lepr+ PDLSCs activation. Piezo1 is demonstrated that mediates the mechanosensing of Lepr+ PDLSCs by conditional Piezo1-deficient mice. Meanwhile, Yoda1, a selective activator of Piezo1, significantly accelerates periodontal tissue growth via the induction of Lepr+ cells. In summary, Lepr marks a unique multipotent PDLSC population in vivo, to contribute toward periodontal homeostasis via Piezo1-mediated mechanosensing.


Assuntos
Receptores para Leptina , Dente , Animais , Camundongos , Receptores para Leptina/genética , Diferenciação Celular/fisiologia , Ligamento Periodontal , Células-Tronco , Canais Iônicos/genética
11.
Signal Transduct Target Ther ; 8(1): 311, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37607925

RESUMO

As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.


Assuntos
DNA Mitocondrial , Mitocôndrias , Estudos Prospectivos , Mitocôndrias/genética , DNA Mitocondrial/genética , Edição de Genes , Proteínas Mitocondriais
12.
Bone Res ; 11(1): 35, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407584

RESUMO

A distinct population of skeletal stem/progenitor cells (SSPCs) has been identified that is indispensable for the maintenance and remodeling of the adult skeleton. However, the cell types that are responsible for age-related bone loss and the characteristic changes in these cells during aging remain to be determined. Here, we established models of premature aging by conditional depletion of Zmpste24 (Z24) in mice and found that Prx1-dependent Z24 deletion, but not Osx-dependent Z24 deletion, caused significant bone loss. However, Acan-associated Z24 depletion caused only trabecular bone loss. Single-cell RNA sequencing (scRNA-seq) revealed that two populations of SSPCs, one that differentiates into trabecular bone cells and another that differentiates into cortical bone cells, were significantly decreased in Prx1-Cre; Z24f/f mice. Both premature SSPC populations exhibited apoptotic signaling pathway activation and decreased mechanosensation. Physical exercise reversed the effects of Z24 depletion on cellular apoptosis, extracellular matrix expression and bone mass. This study identified two populations of SSPCs that are responsible for premature aging-related bone loss. The impairment of mechanosensation in Z24-deficient SSPCs provides new insight into how physical exercise can be used to prevent bone aging.

13.
Cell Death Dis ; 14(5): 336, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217512

RESUMO

Osteoarthritis (OA) is an age-related degenerative disease without disease-modifying therapy. The lack of aging-induced osteoarthritis models makes the discovery of therapeutic drugs more challenging. The deficiency of ZMPSTE24 could induce Hutchinson-Gilford progeria syndrome (HGPS), a genetic disorder of rapid aging. However, the relationship between HGPS and OA remains unclear. Our results found that the expression of Zmpste24 was decreased in the articular cartilage during the aging process. Zmpste24 knockout mice, Prx1-Cre; Zmpste24fl/fl mice and Col2-CreERT2; Zmpste24fl/fl mice displayed OA phenotype. Loss of Zmpste24 in articular cartilage could exacerbate the occurrence and development of osteoarthritis. Transcriptome sequencing revealed that deletion of Zmpste24 or accumulation of progerin affects chondrocyte metabolism, inhibits cell proliferation and promotes cell senescence. Using this animal model, we elucidate the upregulation of H3K27me3 during chondrocyte senescence and discover the molecular mechanism by which lamin A mutant stabilizes EZH2 expression. The construction of aging-induced osteoarthritis models and the elucidation of the signaling pathways and molecular mechanisms of articular chondrocyte senescence would benefit the discovery and development of new drugs for OA.


Assuntos
Cartilagem Articular , Osteoartrite , Progéria , Camundongos , Animais , Cartilagem Articular/metabolismo , Epigênese Genética , Metaloendopeptidases/metabolismo , Envelhecimento/genética , Progéria/genética , Senescência Celular/genética , Camundongos Knockout , Osteoartrite/genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo
14.
Natl Sci Rev ; 10(4): nwad028, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37051524

RESUMO

Human lung adenosquamous cell carcinoma (LUAS), containing both adenomatous and squamous pathologies, harbors strong plasticity and is significantly associated with poor prognosis. We established an up-to-date comprehensive genomic and transcriptomic landscape of LUAS in 109 Chinese specimens and demonstrated LUAS development via adeno-to-squamous transdifferentiation. Unsupervised transcriptomic clustering and dynamic network biomarker analysis identified an inflammatory subtype as the critical transition stage during LUAS development. Dynamic dysregulation of the counteracting lineage-specific transcription factors (TFs), containing adenomatous TFs NKX2-1 and FOXA2, and squamous TFs TP63 and SOX2, finely tuned the lineage transition via promoting CXCL3/5-mediated neutrophil infiltration. Genomic clustering identified the most malignant subtype featured with STK11-inactivation, and targeting LSD1 through genetic deletion or pharmacological inhibition almost eradicated STK11-deficient lung tumors. These data collectively uncover the comprehensive molecular landscape, oncogenic driver spectrum and therapeutic vulnerability of Chinese LUAS.

15.
FEBS J ; 290(16): 4074-4091, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37042280

RESUMO

Osteocytes are the terminally differentiated bone cells resulted from bone formation. Although there are two distinct processes of bone formation, intramembranous and endochondral ossifications contributing to the formation of calvarial and long bones, it is not clear whether the distinct pathways determine the differences between calvaria and femoral cortical bone derived osteocytes. In the present study, we employed confocal structured illumination microscopy and mRNA-sequencing analysis to characterize the morphologic and transcriptomic expression of osteocytes from murine calvaria and mid-shaft femoral cortical bone. Structured illumination microscopy and geometric modelling showed round shaped and irregularly scattered calvarial osteocytes compared to spindle shaped and orderly arrayed cortical osteocytes. mRNA-sequencing analysis indicated different transcriptomic profiles between calvarial and cortical osteocytes and provided evidence that mechanical response of osteocytes may contribute to geometrical differences. Furthermore, transcriptomic analysis showed that these two groups of osteocytes come from distinct pathways with 121 ossification-related genes differentially expressed. Analysis of correlation between ossification and osteocyte geometries via a Venn diagram showed that several genes related to ossification, cytoskeleton organization and dendrite development were differentially expressed between calvarial and cortical osteocytes. Finally, we demonstrated that aging disrupted the organization of dendrites and cortical osteocytes but had no significant effects on calvarial osteocytes. Together, we conclude that calvarial and cortical osteocytes are different in various aspects, which is probably the consequence of their distinct pathways of ossification.


Assuntos
Osteócitos , Crânio , Animais , Camundongos , Osteócitos/metabolismo , Expressão Gênica , RNA Mensageiro/metabolismo , Envelhecimento/genética
16.
Signal Transduct Target Ther ; 8(1): 142, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024477

RESUMO

Bone homeostasis is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. Dysregulation of this process leads to multiple diseases, including osteoporosis. However, the underlying molecular mechanisms are not fully understood. Here, we show that the global and conditional osteoblast knockout of a deubiquitinase Otub1 result in low bone mass and poor bone strength due to defects in osteogenic differentiation and mineralization. Mechanistically, the stability of FGFR2, a crucial regulator of osteogenesis, is maintained by OTUB1. OTUB1 attenuates the E3 ligase SMURF1-mediated FGFR2 ubiquitination by inhibiting SMURF1's E2 binding. In the absence of OTUB1, FGFR2 is ubiquitinated excessively by SMURF1, followed by lysosomal degradation. Consistently, adeno-associated virus serotype 9 (AAV9)-delivered FGFR2 in knee joints rescued the bone mass loss in osteoblast-specific Otub1-deleted mice. Moreover, Otub1 mRNA level was significantly downregulated in bones from osteoporotic mice, and restoring OTUB1 levels through an AAV9-delivered system in ovariectomy-induced osteoporotic mice attenuated osteopenia. Taken together, our results suggest that OTUB1 positively regulates osteogenic differentiation and mineralization in bone homeostasis by controlling FGFR2 stability, which provides an optical therapeutic strategy to alleviate osteoporosis.


Assuntos
Osteogênese , Osteoporose , Animais , Feminino , Camundongos , Osso e Ossos/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
17.
Exp Mol Med ; 55(1): 69-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599929

RESUMO

Haploinsufficiency of Runt-related transcription factor-2 (RUNX2) is responsible for cleidocranial dysplasia (CCD), a rare hereditary disease with a range of defects, including delayed closure of the cranial sutures and short stature. Symptom-based treatments, such as a combined surgical-orthodontic approach, are commonly used to treat CCD patients. However, there have been few reports of treatments based on Runx2-specific regulation targeting dwarfism symptoms. Previously, we found that the miR338 cluster, a potential diagnostic and therapeutic target for postmenopausal osteoporosis, could directly target Runx2 during osteoblast differentiation in vitro. Here, we generated miR338-/-;Runx2+/- mice to investigate whether inhibition of miR338 could rescue CCD defects caused by Runx2 mutation in vivo. We found that the dwarfism phenotype caused by Runx2 haploinsufficiency was recovered in miR338-/-;Runx2+/- mice, with complete bone density restoration and quicker closure of fontanels. Single-cell RNA-seq analysis revealed that knockout of miR338 specifically rescued the osteoblast lineage priming ability of bone marrow stromal cells in Runx2+/- femurs, which was further confirmed by Osterix-specific conditional knockout of miR338 in Runx2+/- mice (OsxCre; miR338 fl/fl;Runx2+/-). Mechanistically, ablation of the miR338 cluster in Runx2+/- femurs directly rescued the Hif1a-Vegfa pathway in Runx2+/- osteoblasts, as proven by gene expression profiles and ChIP and Re-ChIP assays. Collectively, our data revealed the genetic interaction between Runx2 and the miR338 cluster during osteoblast differentiation and implied that the miR338 cluster could be a potential therapeutic target for CCD.


Assuntos
Displasia Cleidocraniana , Animais , Camundongos , Displasia Cleidocraniana/genética , Displasia Cleidocraniana/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Mutação , Osteoblastos/metabolismo , Osteogênese/genética
18.
Nat Commun ; 13(1): 5211, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064711

RESUMO

Critical-sized bone defects often lead to non-union and full-thickness defects of the calvarium specifically still present reconstructive challenges. In this study, we show that neurotrophic supplements induce robust in vitro expansion of mesenchymal stromal cells, and in situ transplantation of neurotrophic supplements-incorporated 3D-printed hydrogel grafts promote full-thickness regeneration of critical-sized bone defects. Single-cell RNA sequencing analysis reveals that a unique atlas of in situ stem/progenitor cells is generated during the calvarial bone healing in vivo. Notably, we find a local expansion of resident Msx1+ skeletal stem cells after transplantation of the in situ cell culture system. Moreover, the enhanced calvarial bone regeneration is accompanied by an increased endochondral ossification that closely correlates to the Msx1+ skeletal stem cells. Our findings illustrate the time-saving and regenerative efficacy of in situ cell culture systems targeting major cell subpopulations in vivo for rapid bone tissue regeneration.


Assuntos
Células-Tronco Mesenquimais , Engenharia Tecidual , Regeneração Óssea , Osteogênese , Crânio , Células-Tronco , Alicerces Teciduais
19.
Sci China Life Sci ; 65(12): 2354-2454, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36066811

RESUMO

Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.


Assuntos
Doenças Cardiovasculares , Neoplasias , Humanos , Envelhecimento/genética , Envelhecimento/metabolismo , Neoplasias/genética
20.
Nat Commun ; 13(1): 4709, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953487

RESUMO

The Ten-eleven translocation (TET) family of dioxygenases mediate cytosine demethylation by catalyzing the oxidation of 5-methylcytosine (5mC). TET-mediated DNA demethylation controls the proper differentiation of embryonic stem cells and TET members display functional redundancy during early gastrulation. However, it is unclear if TET proteins have functional significance in mammalian skeletal development. Here, we report that Tet genes deficiency in mesoderm mesenchymal stem cells results in severe defects of bone development. The existence of any single Tet gene allele can support early bone formation, suggesting a functional redundancy of TET proteins. Integrative analyses of RNA-seq, Whole Genome Bisulfite Sequencing (WGBS), 5hmC-Seal and Assay for Transposase-Accessible Chromatin (ATAC-seq) demonstrate that TET-mediated demethylation increases the chromatin accessibility of target genes by RUNX2 and facilities RUNX2-regulated transcription. In addition, TET proteins interact with RUNX2 through their catalytic domain to regulate cytosine methylation around RUNX2 binding region. The catalytic domain is indispensable for TET enzymes to regulate RUNX2 transcription activity on its target genes and to regulate bone development. These results demonstrate that TET enzymes function to regulate RUNX2 activity and maintain skeletal homeostasis.


Assuntos
Cromatina , Dioxigenases , 5-Metilcitosina/metabolismo , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Citosina/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Mamíferos/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA