RESUMO
Ameliorating the tumor immune microenvironment is a key strategy to improve the therapeutic outcomes of patients with cancer. Sandoval and colleagues demonstrate that iron chelation enhances type I IFN production, promotes NK cell tumor trafficking and activation, and synergizes with chemotherapy drug cisplatin to reduce metastatic ovarian cancer progression in murine models. See related article by Sandoval et al., p. 1901.
Assuntos
Células Matadoras Naturais , Neoplasias Ovarianas , Microambiente Tumoral , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Células Matadoras Naturais/imunologia , Humanos , Animais , Camundongos , Microambiente Tumoral/imunologiaRESUMO
Tumor-associated macrophages (TAMs) constitute the primary subset of immune cells within the tumor microenvironment (TME). Exhibiting both phenotypic and functional heterogeneity, TAMs play distinct roles in tumor initiation, progression, and responses to therapy in patients with cancer. In response to various immune and metabolic cues within the TME, TAMs dynamically alter their metabolic profiles to adapt. Changes in glucose, amino acid, and lipid metabolism in TAMs, as well as their interaction with oncometabolites, not only sustain their energy demands but also influence their impact on tumor immune responses. Understanding the molecular mechanisms underlying the metabolic reprogramming of TAMs and their orchestration of metabolic processes can offer insights for the development of novel cancer immunotherapies targeting TAMs. Here, we discuss how metabolism reprograms macrophages in the TME and review clinical trials aiming to normalize metabolic alterations in TAMs and alleviate TAM-mediated immune suppression and protumor activity.
RESUMO
ESK981 is a potent tyrosine kinase and PIKfyve lipid kinase inhibitor. This phase II trial evaluated the efficacy of ESK981 as a single agent in patients with androgen receptor-positive (AR +) metastatic castration-resistant prostate cancer (mCRPC). Eligible patients had mCRPC with progression on AR-targeted agents and without prior chemotherapy treatment. Each patient received 160 mg ESK981 once daily for 5 days per week for 4 weeks per cycle (except for an adverse event (AE) occurrence). The primary endpoints were a 50% reduction in prostate-specific antigen (PSA50), and safety. Secondary endpoints included the time and the duration of PSA response, PSA progression rates, PSA progression free survival (PFS) and overall survival (OS). Exploratory investigations included whole exome sequencing in patients before treatment, and morphological evaluation of biopsy samples pre- and post-treatment. PSA was evaluated in 13 patients. Only one patient (7.7% two-sided 95% Wilson CI (0.4%, 33.3%)) experienced a reduction in their PSA levels by 50% or more. The most common grade 3 treatment-related AEs were cardiac disorders, diarrhea, hypertension, alanine transaminase and aspartate transaminase elevations. No grade 4-5 events occurred. Median PFS was 1.8 months, and median OS was 12.1 months. Peripheral immune cells showed increased T cell activation and cytokine production in two patients who received 12-weeks of ESK981. Although relatively well tolerated, ESK981 alone showed no anti-tumor activity in patients with AR + mCRPC and its further evaluation as a single agent in AR + mCRPC is not warranted. (Trial registration: ClinicalTrials.gov, NCT03456804. Registration date: March 7, 2018).
RESUMO
Immune tolerance mechanisms are shared in cancer and pregnancy. Through cross-analyzing single-cell RNA-sequencing data from multiple human cancer types and the maternal-fetal interface, we found B7-H4 (VTCN1) is an onco-fetal immune tolerance checkpoint. We showed that genetic deficiency of B7-H4 resulted in immune activation and fetal resorption in allogeneic pregnancy models. Analogously, B7-H4 contributed to MPA/DMBA-induced breast cancer progression, accompanied by CD8+ T cell exhaustion. Female hormone screening revealed that progesterone stimulated B7-H4 expression in placental and breast cancer cells. Mechanistically, progesterone receptor (PR) bound to a newly identified -58 kb enhancer, thereby mediating B7-H4 transcription via the PR-P300-BRD4 axis. PR antagonist or BRD4 degrader potentiated immunotherapy in a murine B7-H4+ breast cancer model. Thus, our work unravels a mechanistic and biological connection of a female sex hormone (progesterone) to onco-fetal immune tolerance via B7-H4 and suggests that the PR-P300-BRD4 axis is targetable for treating B7-H4+ cancer.
Assuntos
Tolerância Imunológica , Progesterona , Progestinas , Inibidor 1 da Ativação de Células T com Domínio V-Set , Animais , Feminino , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Humanos , Camundongos , Gravidez , Progestinas/farmacologia , Progestinas/metabolismo , Progesterona/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptores de Progesterona/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Placenta/imunologiaRESUMO
PURPOSE: Real world evidence is crucial to understanding the diffusion of new oncologic therapies, monitoring cancer outcomes, and detecting unexpected toxicities. In practice, real world evidence is challenging to collect rapidly and comprehensively, often requiring expensive and time-consuming manual case-finding and annotation of clinical text. In this Review, we summarise recent developments in the use of artificial intelligence to collect and analyze real world evidence in oncology. METHODS: We performed a narrative review of the major current trends and recent literature in artificial intelligence applications in oncology. RESULTS: Artificial intelligence (AI) approaches are increasingly used to efficiently phenotype patients and tumors at large scale. These tools also may provide novel biological insights and improve risk prediction through multimodal integration of radiographic, pathological, and genomic datasets. Custom language processing pipelines and large language models hold great promise for clinical prediction and phenotyping. CONCLUSIONS: Despite rapid advances, continued progress in computation, generalizability, interpretability, and reliability as well as prospective validation are needed to integrate AI approaches into routine clinical care and real-time monitoring of novel therapies.
Assuntos
Inteligência Artificial , Oncologia , Neoplasias , Humanos , Oncologia/métodos , Oncologia/tendências , Neoplasias/terapiaRESUMO
Cancer treatment continues to shift from utilizing traditional therapies to targeted ones, such as protein kinase inhibitors and immunotherapy. Mobilizing dendritic cells (DC) and other myeloid cells with antigen presenting and cancer cell killing capacities is an attractive but not fully exploited approach. Here, we show that PIKFYVE is a shared gene target of clinically relevant protein kinase inhibitors and high expression of this gene in DCs is associated with poor patient response to immune checkpoint blockade (ICB) therapy. Genetic and pharmacological studies demonstrate that PIKfyve ablation enhances the function of CD11c+ cells (predominantly dendritic cells) via selectively altering the non-canonical NF-κB pathway. Both loss of Pikfyve in CD11c+ cells and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively regulates the function of CD11c+ cells, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.
Assuntos
Antígeno CD11c , Células Dendríticas , Morfolinas , Fosfatidilinositol 3-Quinases , Animais , Feminino , Humanos , Camundongos , Antígeno CD11c/metabolismo , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Hidrazonas , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/terapia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas , Linfócitos T/imunologia , MasculinoRESUMO
Ferroptosis is a type of regulated cell death that drives the pathophysiology of many diseases. Oxidative stress is detectable in many types of regulated cell death, but only ferroptosis involves lipid peroxidation and iron dependency. Ferroptosis originates and propagates from several organelles, including the mitochondria, endoplasmic reticulum, Golgi, and lysosomes. Recent data have revealed that immune cells can both induce and undergo ferroptosis. A mechanistic understanding of how ferroptosis regulates immunity is critical to understanding how ferroptosis controls immune responses and how this is dysregulated in disease. Translationally, more work is needed to produce ferroptosis-modulating immunotherapeutics. This review focuses on the role of ferroptosis in immune-related diseases, including infection, autoimmune diseases, and cancer. We discuss how ferroptosis is regulated in immunity, how this regulation contributes to disease pathogenesis, and how targeting ferroptosis may lead to novel therapies.
Assuntos
Ferroptose , Ferro , Ferroptose/imunologia , Humanos , Animais , Ferro/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Peroxidação de Lipídeos/imunologia , Doenças Autoimunes/imunologia , Imunidade , Estresse Oxidativo/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/imunologiaRESUMO
Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.
Assuntos
Autofagia , Ferroptose , Ferroptose/fisiologia , Humanos , Autofagia/fisiologia , Animais , ConsensoRESUMO
Tumor-associated macrophages (TAMs) shape tumor immunity and therapeutic efficacy. However, it is poorly understood whether and how post-translational modifications (PTMs) intrinsically affect the phenotype and function of TAMs. Here, we reveal that peptidylarginine deiminase 4 (PAD4) exhibits the highest expression among common PTM enzymes in TAMs and negatively correlates with the clinical response to immune checkpoint blockade. Genetic and pharmacological inhibition of PAD4 in macrophages prevents tumor progression in tumor-bearing mouse models, accompanied by an increase in macrophage major histocompatibility complex (MHC) class II expression and T cell effector function. Mechanistically, PAD4 citrullinates STAT1 at arginine 121, thereby promoting the interaction between STAT1 and protein inhibitor of activated STAT1 (PIAS1), and the loss of PAD4 abolishes this interaction, ablating the inhibitory role of PIAS1 in the expression of MHC class II machinery in macrophages and enhancing T cell activation. Thus, the PAD4-STAT1-PIAS1 axis is an immune restriction mechanism in macrophages and may serve as a cancer immunotherapy target.
Assuntos
Hidrolases , Processamento de Proteína Pós-Traducional , Camundongos , Animais , Desiminases de Arginina em Proteínas/metabolismo , Proteína-Arginina Desiminase do Tipo 4/genética , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Hidrolases/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Macrófagos/metabolismoRESUMO
The modern armamentarium for cancer treatment includes immunotherapy and targeted therapy, such as protein kinase inhibitors. However, the mechanisms that allow cancer-targeting drugs to effectively mobilize dendritic cells (DCs) and affect immunotherapy are poorly understood. Here, we report that among shared gene targets of clinically relevant protein kinase inhibitors, high PIKFYVE expression was least predictive of complete response in patients who received immune checkpoint blockade (ICB). In immune cells, high PIKFYVE expression in DCs was associated with worse response to ICB. Genetic and pharmacological studies demonstrated that PIKfyve ablation enhanced DC function via selectively altering the alternate/non-canonical NF-κB pathway. Both loss of Pikfyve in DCs and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively controls DCs, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.
RESUMO
Immune checkpoint blockade (ICB) induces a remarkable and durable response in a subset of cancer patients. However, most patients exhibit either primary or acquired resistance to ICB. This resistance arises from a complex interplay of diverse dynamic mechanisms within the tumor microenvironment (TME). These mechanisms include genetic, epigenetic, and metabolic alterations that prevent T cell trafficking to the tumor site, induce immune cell dysfunction, interfere with antigen presentation, drive heightened expression of coinhibitory molecules, and promote tumor survival after immune attack. The TME worsens ICB resistance through the formation of immunosuppressive networks via immune inhibition, regulatory metabolites, and abnormal resource consumption. Finally, patient lifestyle factors, including obesity and microbiome composition, influence ICB resistance. Understanding the heterogeneity of cellular, molecular, and environmental factors contributing to ICB resistance is crucial to develop targeted therapeutic interventions that enhance the clinical response. This comprehensive overview highlights key mechanisms of ICB resistance that may be clinically translatable.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/etiologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Animais , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Epigênese GenéticaRESUMO
Epigenetic modulation is well established in hematologic malignancies but to a lesser degree in solid tumors. Here we report the results of a phase Ib/II study of guadecitabine and durvalumab in advanced clear cell renal cell carcinoma (ccRCC; NCT03308396). Patients received guadecitabine (starting at 60 mg/m2 subcutaneously on days 1-5 with de-escalation to 45 mg/m2 in case of dose limiting toxicity) with durvalumab (1500 mg intravenously on day 8). The study enrolled 57 patients, 6 in phase Ib with safety being the primary objective and 51in phase II, comprising 2 cohorts: 36 patients in Cohort 1 were treatment naive to checkpoint inhibitors (CPI) with 0-1 prior therapies and 15 patients in Cohort 2 were treated with up to two prior systemic therapies including one CPI. The combination of guadecitabine 45 mg/m2 with durvalumab 1500 mg was deemed safe. The primary objective of overall response rate (ORR) in cohort 1 was 22%. Sixteen patients (44%) experienced stable disease (SD). Secondary objectives included overall survival (OS), duration of response, progression-free survival (PFS), clinical benefit rate, and safety as well as ORR for Cohort 2. Median PFS for cohort 1 and cohort 2 were 14.26 and 3.91 months respectively. Median OS was not reached. In cohort 2, one patient achieved a partial response and 60% achieved SD. Asymptomatic neutropenia was the most common adverse event. Even though the trial did not meet the primary objective in cohort 1, the tolerability and PFS signal in CPI naive patients are worth further investigation.
Assuntos
Anticorpos Monoclonais , Carcinoma de Células Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Azacitidina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversosRESUMO
Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.
Assuntos
Ferroptose , Peroxidação de Lipídeos , Ferroptose/genética , Humanos , Animais , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Ferro/metabolismoRESUMO
Immune checkpoint inhibitors can stimulate antitumor immunity but can also induce toxicities termed immune-related adverse events (irAEs). Colitis is a common and severe irAE that can lead to treatment discontinuation. Mechanistic understanding of gut irAEs has been hampered because robust colitis is not observed in laboratory mice treated with checkpoint inhibitors. We report here that this limitation can be overcome by using mice harboring the microbiota of wild-caught mice, which develop overt colitis following treatment with anti-CTLA-4 antibodies. Intestinal inflammation is driven by unrestrained activation of IFNγ-producing CD4+ T cells and depletion of peripherally induced regulatory T cells through Fcγ receptor signaling. Accordingly, anti-CTLA-4 nanobodies that lack an Fc domain can promote antitumor responses without triggering colitis. This work suggests a strategy for mitigating gut irAEs while preserving antitumor stimulating effects of CTLA-4 blockade.
Assuntos
Linfócitos T CD4-Positivos , Colite , Inibidores de Checkpoint Imunológico , Ativação Linfocitária , Microbiota , Receptores de IgG , Animais , Camundongos , Linfócitos T CD4-Positivos/imunologia , Colite/etiologia , Colite/microbiologia , Antígeno CTLA-4/antagonistas & inibidores , Microbiota/imunologia , Receptores de IgG/imunologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Camundongos Endogâmicos C57BLRESUMO
Despite the remarkable clinical success of immunotherapies in a subset of cancer patients, many fail to respond to treatment and exhibit resistance. Here, we found that genetic or pharmacologic inhibition of the lipid kinase PIKfyve, a regulator of autophagic flux and lysosomal biogenesis, upregulated surface expression of major histocompatibility complex class I (MHC-I) in cancer cells via impairing autophagic flux, resulting in enhanced cancer cell killing mediated by CD8+ T cells. Genetic depletion or pharmacologic inhibition of PIKfyve elevated tumor-specific MHC-I surface expression, increased intratumoral functional CD8+ T cells, and slowed tumor progression in multiple syngeneic mouse models. Importantly, enhanced antitumor responses by Pikfyve-depletion were CD8+ T cell- and MHC-I-dependent, as CD8+ T cell depletion or B2m knockout rescued tumor growth. Furthermore, PIKfyve inhibition improved response to immune checkpoint blockade (ICB), adoptive cell therapy, and a therapeutic vaccine. High expression of PIKFYVE was also predictive of poor response to ICB and prognostic of poor survival in ICB-treated cohorts. Collectively, our findings show that targeting PIKfyve enhances immunotherapies by elevating surface expression of MHC-I in cancer cells, and PIKfyve inhibitors have potential as agents to increase immunotherapy response in cancer patients.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Humanos , Genes MHC Classe I , Antígenos de Histocompatibilidade Classe I , Imunoterapia/métodos , Lipídeos , Neoplasias/genética , Neoplasias/terapiaRESUMO
Disruption of antigen presentation via loss of major histocompatibility complex (MHC) expression is a strategy whereby cancer cells escape immune surveillance and develop resistance to immunotherapy. Here, we develop the personalized genomics algorithm Hapster and accurately call somatic mutations within the MHC genes of 10,001 primary and 2,199 metastatic tumors, creating a catalog of 1,663 non-synonymous mutations that provide key insights into MHC mutagenesis. We find that MHC class I genes are among the most frequently mutated genes in both primary and metastatic tumors, while MHC class II mutations are more restricted. Recurrent deleterious mutations are found within haplotype- and cancer-type-specific hotspots associated with distinct mutational processes. Functional classification of MHC residues reveals significant positive selection for mutations disruptive to the B2M, peptide, and T cell binding interfaces, as well as to MHC chaperones.
Assuntos
Antígenos de Histocompatibilidade Classe I , Neoplasias , Humanos , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos HLA , Neoplasias/genética , Linfócitos T , Antígenos de Histocompatibilidade Classe II/genética , Mutação/genéticaRESUMO
Metabolic programming in the tumor microenvironment (TME) alters tumor immunity and immunotherapeutic response in tumor-bearing mice and patients with cancer. Here, we review immune-related functions of core metabolic pathways, key metabolites, and crucial nutrient transporters in the TME, discuss their metabolic, signaling, and epigenetic impact on tumor immunity and immunotherapy, and explore how these insights can be applied to the development of more effective modalities to potentiate the function of T cells and sensitize tumor cell receptivity to immune attack, thereby overcoming therapeutic resistance.
Assuntos
Neoplasias , Microambiente Tumoral , Camundongos , Animais , Imunoterapia , Neoplasias/metabolismo , Linfócitos T/metabolismo , Redes e Vias MetabólicasRESUMO
Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.
Assuntos
Neoplasias , Humanos , Terapia Combinada , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , ImunoterapiaRESUMO
Immunometabolism considers the relationship between metabolism and immunity. Typically, researchers focus on either the metabolic pathways within immune cells that affect their function or the impact of immune cells on systemic metabolism. A more holistic approach that considers both these viewpoints is needed. On September 5-8, 2022, experts in the field of immunometabolism met for the Keystone symposium "Immunometabolism at the Crossroads of Obesity and Cancer" to present recent research across the field of immunometabolism, with the setting of obesity and cancer as an ideal example of the complex interplay between metabolism, immunity, and cancer. Speakers highlighted new insights on the metabolic links between tumor cells and immune cells, with a focus on leveraging unique metabolic vulnerabilities of different cell types in the tumor microenvironment as therapeutic targets and demonstrated the effects of diet, the microbiome, and obesity on immune system function and cancer pathogenesis and therapy. Finally, speakers presented new technologies to interrogate the immune system and uncover novel metabolic pathways important for immunity.