Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell Mol Immunol ; 20(12): 1445-1456, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37932534

RESUMO

Immune checkpoint blockade (ICB), including anti-cytotoxic T-lymphocyte associated protein 4 (CTLA-4), benefits only a limited number of patients with cancer. Understanding the in-depth regulatory mechanism of CTLA-4 protein stability and its functional significance may help identify ICB resistance mechanisms and assist in the development of novel immunotherapeutic modalities to improve ICB efficacy. Here, we identified that TNF receptor-associated factor 6 (TRAF6) mediates Lys63-linked ubiquitination and subsequent lysosomal degradation of CTLA-4. Moreover, by using TRAF6-deficient mice and retroviral overexpression experiments, we demonstrated that TRAF6 promotes CTLA-4 degradation in a T-cell-intrinsic manner, which is dependent on the RING domain of TRAF6. This intrinsic regulatory mechanism contributes to CD8+ T-cell-mediated antitumor immunity in vivo. Additionally, by using an OX40 agonist, we demonstrated that the OX40-TRAF6 axis is responsible for CTLA-4 degradation, thereby controlling antitumor immunity in both tumor-bearing mice and patients with cancer. Overall, our findings demonstrate that the OX40-TRAF6 axis promotes CTLA-4 degradation and is a potential therapeutic target for the improvement of T-cell-based immunotherapies.


Assuntos
Neoplasias , Fator 6 Associado a Receptor de TNF , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Antígeno CTLA-4 , Imunoterapia
2.
Circulation ; 148(4): 336-353, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37232170

RESUMO

BACKGROUND: PCSK9 (proprotein convertase subtilisin/kexin 9), which is mainly secreted by the liver, is not only a therapeutic target for hyperlipidemia and cardiovascular disease, but also has been implicated in the immune regulation of infections and tumors. However, the role of PCSK9 and the liver in heart transplant rejection (HTR) and the underlying mechanisms remain unclear. METHODS: We assessed serum PCSK9 expression in both murine and human recipients during HTR and investigated the effect of PCSK9 ablation on HTR by using global knockout mice and a neutralizing antibody. Moreover, we performed multiorgan histological and transcriptome analyses, and multiomics and single-cell RNA-sequencing studies of the liver during HTR, as well. We further used hepatocyte-specific Pcsk9 knockout mice to investigate whether the liver regulated HTR through PCSK9. Last, we explored the regulatory effect of the PCSK9/CD36 pathway on the phenotype and function of macrophages in vitro and in vivo. RESULTS: Here, we report that murine and human recipients have high serum PCSK9 levels during HTR. PCSK9 ablation prolonged cardiac allograft survival and attenuated the infiltration of inflammatory cells in the graft and the expansion of alloreactive T cells in the spleen. Next, we demonstrated that PCSK9 was mainly produced and significantly upregulated in the recipient liver, which also showed a series of signaling changes, including changes in the TNF-α (tumor necrosis factor α) and IFN-γ (interferon γ) signaling pathways and the bile acid and fatty acid metabolism pathways. We found mechanistically that TNF-α and IFN-γ synergistically promoted PCSK9 expression in hepatocytes through the transcription factor SREBP2 (sterol regulatory element binding protein 2). Moreover, in vitro and in vivo studies indicated that PCSK9 inhibited CD36 expression and fatty acid uptake by macrophages and strengthened the proinflammatory phenotype, which facilitated their ability to promote proliferation and IFN-γ production by donor-reactive T cells. Last, we found that the protective effect of PCSK9 ablation against HTR is dependent on the CD36 pathway in the recipient. CONCLUSIONS: This study reveals a novel mechanism for immune regulation by the liver through the PCSK9/CD36 pathway during HTR, which influences the phenotype and function of macrophages and suggests that the modulation of this pathway may be a potential therapeutic target to prevent HTR.


Assuntos
Transplante de Coração , Pró-Proteína Convertase 9 , Humanos , Camundongos , Animais , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células Hep G2 , Fígado/metabolismo , Ácidos Graxos/metabolismo , Camundongos Knockout , Transplante de Coração/efeitos adversos , Receptores de LDL/genética
3.
Theranostics ; 12(14): 6242-6257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168621

RESUMO

Rationale: Transplant rejection is a major impediment to long-term allograft survival, in which the actions of immune cells are of fundamental importance. However, the immune cell dynamics and local intercellular communication of acute cardiac allograft rejection are not completely clear. Methods: Here we performed single-cell RNA sequencing on CD45+ immune cells isolated from cardiac grafts and spleens in a model of murine heterotopic heart transplantation. Moreover, we applied unsupervised clustering, functional enrichment analysis, cell trajectory construction and intercellular communication analysis to explore the immune cell dynamics and local intercellular communication of acute cardiac allograft rejection at single-cell level. The effect of CXCR3 antagonist and neutralizing antibody against its ligand on allograft rejection and T cell function was evaluated in murine heart transplantation model. Results: We presented the immune cell landscape of acute murine cardiac allograft rejection at single-cell resolution, and uncovered the functional characteristics and differentiation trajectory of several alloreactive cell subpopulations, including Mki67hi CTLs, Ccl5hi CTLs, activated Tregs and alloreactive B cells. We demonstrated local intercellular communication and revealed the upregulation of CXCR3 and its ligands in cardiac allografts. Finally, CXCR3 blockade significantly suppressed acute cardiac allograft rejection and inhibited the alloreactive T cell function. Conclusions: These results provide a new insight into the immune cell dynamics and local intercellular communication of acute cardiac allograft rejection, and suggest CXCR3 pathway may serve as a potential therapeutic target for transplant rejection.


Assuntos
Transplante de Coração , Aloenxertos , Animais , Anticorpos Neutralizantes , Comunicação Celular , Rejeição de Enxerto , Transplante de Coração/métodos , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Doadores de Tecidos
4.
Front Immunol ; 13: 894789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720337

RESUMO

Background: Graft vascular disease (GVD), which limits the long-term survival of patients after solid-organ transplantation, is associated with both immune responses and nonimmune factors, including dyslipidemia. Recent studies have shown that inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), a U.S. Federal Drug Administration-approved treatment for hyperlipidemia, reduces cardiovascular events, regulates inflammatory responses, and enhances the efficacy of immune checkpoint therapy in cancer treatment through a cholesterol-independent mechanism. However, whether targeting PCSK9 is a potential therapeutic strategy for GVD remains unknown. Methods: Serum samples and grafts were harvested from male mice undergoing abdominal aortic transplantation. The pathological alterations in the aortic grafts were detected by hematoxylin and eosin staining, Verhoeff's Van Gieson staining, and Masson staining. Inflammatory cell infiltration and proinflammatory cytokine expression in the aortic grafts were detected by immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. The regulatory effects of PCSK9 on vascular smooth muscle cell (VSMC) migration and proliferation were examined by transwell, EdU, and western blot assays. The effect of Evolocumab, a PCSK9 inhibitor, on GVD in humanized PCSK9 mice was also evaluated. Results: PCSK9 was upregulated in the serum, grafts, and liver of mice in the allograft group subjected to abdominal aortic transplantation. Pcsk9 knockout significantly reduced vascular stenosis, the intimal hyperplasia area and collagen deposition. Pcsk9 depletion also inhibited macrophage recruitment and the mRNA expression of proinflammatory cytokines in aortic grafts. Furthermore, Pcsk9 knockout suppressed the migration and proliferation of VSMCs, which was related to the inhibition of NLRP3 inflammasome activation. Meanwhile, Evolocumab significantly ameliorated GVD in humanized PCSK9 mice. Conclusion: PCSK9 is upregulated in a mouse model of GVD, and Pcsk9 knockout reduces vascular occlusion, suggesting that PCSK9 may be a promising target for the treatment of GVD.


Assuntos
Pró-Proteína Convertase 9 , Doenças Vasculares , Animais , Humanos , Inflamassomos , Masculino , Camundongos , Músculo Liso Vascular/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo
6.
Front Pharmacol ; 12: 706748, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483913

RESUMO

Background: Dendritic cells (DCs) serve as an important part of the immune system and play a dual role in immune response. Mature DCs can initiate immune response, while immature or semi-mature DCs induce immune hyporesponsiveness or tolerance. Previous studies have shown that aspirin can effectively inhibit the maturation of DCs. However, the protective effect of aspirin on acute cardiac allograft rejection has not been studied. The aim of this study was to elucidate the effect of aspirin exert on allograft rejection. Methods: The model of MHC-mismatched (BALB/c to B6 mice) heterotopic heart transplantation was established and administered intraperitoneal injection with aspirin. The severity of allograft rejection, transcriptional levels of cytokines, and characteristics of immune cells were assessed. Bone marrow-derived dendritic cells (BMDCs) were generated with or without aspirin. The function of DCs was determined via mixed lymphocyte reaction (MLR). The signaling pathway of DCs was detected by Western blotting. Results: Aspirin significantly prolonged the survival of cardiac allograft in mouse, inhibited the production of pro-inflammatory cytokines and the differentiation of effector T cells (Th1 and Th17), as well as promoted the regulatory T cells (Treg). The maturation of DCs in the spleen was obviously suppressed with aspirin treatment. In vitro, aspirin decreased the activation of NF-κB signaling of DCs, as well as impeded MHCII and co-stimulatory molecules (CD80, CD86, and CD40) expression on DCs. Moreover, both the pro-inflammatory cytokines and function of DCs were suppressed by aspirin. Conclusion: Aspirin inhibits the maturation of DCs through the NF-κB signaling pathway and attenuates acute cardiac allograft rejection.

7.
Front Immunol ; 12: 710904, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421916

RESUMO

Although studies in oncology have well explored the pharmacological effects of Birc5, little is known about its role in allogeneic T-cell responses. Therefore, the present study used a mouse model of acute heart allograft rejection to investigate the protective effect and mechanism of conditional knockout of Birc5 in T cells. Survivin (encoded by Birc5) was up-regulated in T cells activated in vivo and in vitro. Deletion of Birc5 in T cells attenuated acute heart allograft rejection by reducing the ratio of effector to naive T cells and Th1 to Tregs. In addition, deletion of Birc5 had no noticeable effect on proliferation but on apoptosis and the secretion of IFN-γ. The results revealed a significant increase in the percentage of Annexin V positive CD4+ T cells in the Birc5-/- group, compared to the WT. Moreover, there was significant increase in early apoptotic alloreactive T cells in Birc5-/- mice and this was partly mediated by caspase-3. Furthermore, treatment with YM155 inhibited acute heart allograft rejection in vivo and increased T-cell apoptosis in healthy human PBMCs in vitro. The results highlight a potential therapeutic target for the prevention and treatment of acute transplant rejection.


Assuntos
Apoptose , Rejeição de Enxerto/prevenção & controle , Transplante de Coração/efeitos adversos , Survivina/fisiologia , Linfócitos T/imunologia , Doença Aguda , Animais , Caspase 3/fisiologia , Imidazóis/farmacologia , Interferon gama/biossíntese , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Naftoquinonas/farmacologia , Transplante Heterotópico
8.
Cell Death Dis ; 12(6): 501, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006836

RESUMO

Regulatory T cells play a crucial role in orchestrating immune response and maintaining immune tolerance, and the expression of the Foxp3 gene is indispensable to the differentiation of regulatory T cells. IL-4 shows strong inhibitory effects on Foxp3 expression and regulatory T cells differentiation, but the detailed mechanisms are still unclear. Here, we revealed that epigenetic modulations are key to this process. Specifically, the inhibition was found to be STAT6 dependent, and HDAC9 was involved with the process of histone deacetylation at the Foxp3 locus, subsequently decreasing chromatin accessibility and Foxp3 gene transcription. Pan-histone deacetylation inhibitors, especially sodium butyrate, notably abolished the inhibitory effects of IL-4 and ameliorated allergic airway inflammation in mouse models. Our research provides important mechanistic insights into how IL-4 inhibits regulatory T cells differentiation and suggests the therapeutic potential of the sodium butyrate in allergic airway disease.


Assuntos
Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Interleucina-4/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linfócitos T Reguladores/citologia , Animais , Diferenciação Celular/fisiologia , Epigênese Genética , Feminino , Humanos , Camundongos , Linfócitos T Reguladores/imunologia
9.
Ann Vasc Surg ; 73: 438-445, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33539949

RESUMO

BACKGROUND: Graft vascular disease (GVD) is the main reason of late transplanted organ failure, which limits the long-term survival of patients. Murine aortic transplant is widely used in the field to understand the mechanisms leading to GVD. Currently, 3 major techniques, end-to-end anastomosis, sleeve suture and cuff technology, have been used to study the mechanism of GVD. However, which method is more suitable in mouse model of GVD? Herein, we compared these 3 surgical techniques in a mouse allograft arteriosclerosis model to determine the technique with the most appreciable outcomes. METHODS: Male C57Bl/6 (H-2b) and BALB/c (H-2d) mice were used for aorta transplantation with these 3 techniques. These 3 techniques were compared with regard to donor artery acquisition time, artery anastomosis time, overall surgical time, the amount of bleeding of each technique and the success rate of surgery. Hematoxylin and eosin (H&E) and Masson staining were used to examine the pathological changes of grafted vessels. The protein expression of phospho-NF-κb P65 and PCNA were determined to validate laminar flow and proliferative capacity of neointima obtained from different surgical and control groups. RESULTS: Sleeve suture had a shorter vascular anastomosis time and total operation time than end-to-end anastomosis and cuff technique. Sleeve suture and cuff technique had significantly fewer amount of bleeding from the site of vascular anastomosis than end-to-end anastomosis. Moreover, sleeve suture had the highest success rate among these 3 techniques. There was no difference in the degree of graft stenosis and collagen deposition between these 3 techniques. In addition, there was no significant difference in the expression of phospho-NF-κb P65and PCNA between the experimental group. CONCLUSIONS: Sleeve suture is superior to end-to-end anastomosis and cuff technique with regard to vascular grafting in the murine model.


Assuntos
Aorta Abdominal/transplante , Doenças da Aorta/etiologia , Arteriosclerose/etiologia , Enxerto Vascular/métodos , Anastomose Cirúrgica , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Arteriosclerose/metabolismo , Arteriosclerose/patologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neointima , Fosforilação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fatores de Tempo , Fator de Transcrição RelA/metabolismo
10.
Theranostics ; 10(18): 8051-8060, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32724457

RESUMO

Background: The immune checkpoint cytotoxic T lymphocyte antigen-4 (CTLA-4), induced upon T cell activation but degraded quickly, has been targeted in the clinical therapy of advanced cancers and autoimmune diseases. However, whether inhibiting CTLA-4 degradation ameliorates transplant rejection remains unknown. Methods: The CTLA-4 expression in activated murine T cells treated with the inhibitors mediating protein degradation was detected by flow cytometry (FCM). CD45.1 mice, which received TEa T cells and underwent heart transplantation, were administrated with the inhibitor. Subsequently, CTLA-4 expression of TEa T cells was analyzed. Murine skin and heart transplantation models were built, then the survival and histopathology of the allografts, and T cell subsets in the spleens of each group were compared. Results: Chloroquine (CQ) was identified as an inhibitor of CTLA-4 degradation, which augmented both surface and total CTLA-4 expression in T cells. It considerably prolonged the skin and heart allograft survival time and reduced the infiltration of inflammatory cells in allografts. Besides decreasing the frequencies of the CD4+ and CD8+ effector T cells, especially IFN-γ producing T cells, CQ also increased the proportion of regulatory T cells in the spleen. The CTLA-4 blockade abrogated the benefits of CQ on the survival of heart allografts. Moreover, CQ enhanced CTLA-4 expression in activated human T cells and reduced the secretion of IFN-γ in human mixed lymphocyte reaction. Conclusion: Targeting CTLA-4 degradation provides a novel means to prevent transplant rejection and induce transplant tolerance.


Assuntos
Antígeno CTLA-4/agonistas , Cloroquina/farmacologia , Rejeição de Enxerto/prevenção & controle , Transplante de Coração/efeitos adversos , Transplante de Pele/efeitos adversos , Animais , Autofagia/efeitos dos fármacos , Antígeno CTLA-4/metabolismo , Linhagem Celular , Cloroquina/uso terapêutico , Modelos Animais de Doenças , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/efeitos dos fármacos , Sobrevivência de Enxerto/imunologia , Humanos , Interferon gama/antagonistas & inibidores , Interferon gama/metabolismo , Ativação Linfocitária , Teste de Cultura Mista de Linfócitos , Lisossomos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Proteólise/efeitos dos fármacos
11.
Aging (Albany NY) ; 12(12): 11636-11652, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541091

RESUMO

Chronic allograft dysfunction (CAD) resulting from fibrosis is the major limiting factor for long-term survival of lung transplant patients. Myofibroblasts promote fibrosis in multiple organs, including the lungs. In this study, we identified PLK1 as a promoter of myofibroblast differentiation and investigated the mechanism by which its inhibition alleviates transplant-associated obliterative bronchiolitis (OB) during CAD. High-throughput bioinformatic analyses and experiments using the murine heterotopic tracheal transplantation model revealed that PLK1 is upregulated in grafts undergoing CAD as compared with controls, and that inhibiting PLK1 alleviates OB in vivo. Inhibition of PLK1 in vitro reduced expression of the specific myofibroblast differentiation marker α-smooth muscle actin (α-SMA) and decreased phosphorylation of both MEK and ERK. Importantly, we observed a similar phenomenon in human primary fibroblasts. Our results thus highlight PLK1 as a promising therapeutic target for alleviating transplant-associated OB through suppression of TGF-ß1-mediated myofibroblast differentiation.


Assuntos
Bronquiolite Obliterante/patologia , Proteínas de Ciclo Celular/metabolismo , Rejeição de Enxerto/patologia , Transplante de Pulmão/efeitos adversos , Miofibroblastos/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Actinas/metabolismo , Aloenxertos/citologia , Aloenxertos/efeitos dos fármacos , Aloenxertos/patologia , Animais , Bronquiolite Obliterante/etiologia , Bronquiolite Obliterante/prevenção & controle , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Doença Crônica/prevenção & controle , Biologia Computacional , Modelos Animais de Doenças , Fibrose , Técnicas de Silenciamento de Genes , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/prevenção & controle , Voluntários Saudáveis , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Miofibroblastos/efeitos dos fármacos , Células NIH 3T3 , Via de Pentose Fosfato/efeitos dos fármacos , Fosforilação , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Pteridinas/farmacologia , Pteridinas/uso terapêutico , RNA-Seq , Traqueia/citologia , Traqueia/efeitos dos fármacos , Traqueia/patologia , Traqueia/transplante , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima , Quinase 1 Polo-Like
12.
J Cardiovasc Pharmacol Ther ; 25(4): 364-376, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32323562

RESUMO

BACKGROUND: The development of thoracic aortic aneurysm and dissection (TAAD) is mediated by inflammasome activation, which exacerbates the secretion of pro-inflammatory cytokines, chemokines, matrix metalloproteinases (MMPs), and reactive oxygen species (ROS). The glycolytic enzyme pyruvate kinase M2 (PKM2) has shown a protective role against various disorders with an inflammatory basis, such as sepsis, tumorigenesis, and diabetic nephropathy. However, its potential role in TAAD has not been investigated so far. APPROACH AND RESULTS: We analyzed aortic tissues from TAAD patients and the ß-aminopropionitrile fumarate (BAPN)-induced mouse model of TAAD and observed elevated levels of PKM2 in the aortic lesions of both. Treatment with the PKM2 activator TEPP-46 markedly attenuated the progression of TAAD in the mouse model as demonstrated by decreased morbidity and luminal diameter of the aorta. In addition, the thoracic aortas of the BAPN-induced mice showed reduced monocytes and macrophages infiltration and lower levels of IL-1ß, MMPs, and ROS when treated with TEPP-46. Furthermore, TEPP-46 treatment also suppressed the activation of the NOD-like receptor (NLR) family and pyrin domain-containing protein 3 (NLRP3) inflammasome by downregulating p-STAT3 and HIF1-α. CONCLUSION: Pyruvate kinase M2 plays a protective role in TAAD development, and its activation is a promising therapeutic strategy against the progression of TAAD.


Assuntos
Aorta Torácica/efeitos dos fármacos , Aneurisma da Aorta Torácica/prevenção & controle , Dissecção Aórtica/prevenção & controle , Ativadores de Enzimas/farmacologia , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piruvato Quinase/farmacologia , Remodelação Vascular/efeitos dos fármacos , Dissecção Aórtica/enzimologia , Dissecção Aórtica/patologia , Animais , Aorta Torácica/enzimologia , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/enzimologia , Aneurisma da Aorta Torácica/patologia , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Ativação Enzimática , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Piruvato Quinase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
13.
Int Immunopharmacol ; 80: 106152, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31926447

RESUMO

Acute lung injury (ALI) is a devastating clinical disorder with a high mortality rate and for which there is no effective treatment. The main characteristic of ALI is uncontrolled inflammation, and macrophages play a critical role in the development of this disorder. Trametinib, an inhibitor of MAPK/ERK kinase (MEK) activity that possesses anti-inflammatory properties, has been approved for clinical use. Herein, the influence of trametinib and its underlying mechanism were investigated using a lipopolysaccharide (LPS)-induced murine ALI model. We found that trametinib treatment prevented the LPS-facilitated expression of proinflammatory mediators in macrophages, and this anti-inflammatory action was closely correlated with suppression of the MEK-ERK-early growth response (Egr)-1 pathway. Furthermore, trametinib treatment alleviated LPS-induced ALI in mice, and attenuated edema, proinflammatory mediator production, and neutrophil infiltration. Trametinib pretreatment also attenuated the MEK-ERK-Egr-1 pathway in lung tissues. In conclusion, these data demonstrate that trametinib pretreatment suppresses inflammation in LPS-activated macrophages in vitro and protects against murine ALI established by LPS administration in vivo through inhibition of the MEK-ERK-Egr-1 pathway. Therefore, trametinib might have therapeutic potential for ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Piridonas/uso terapêutico , Pirimidinonas/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/química , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Piridonas/farmacologia , Pirimidinonas/farmacologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
14.
Life Sci ; 241: 117141, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31811853

RESUMO

AIMS: Glibenclamide, a diabetes mellitus type 2 medication, has anti-inflammatory and autoimmune properties. This study investigated the effects of glibenclamide on transplant-induced arteriosclerosis as well as the underlying molecular events. METHODS: Male C57Bl/6 (H-2b) and BALB/c (H-2d) mice were used for aorta transplantation. We used hematoxylin and eosin (HE) and Elastic Van Gieson (EVG) staining for histological assessment, and qRT-PCR and ELISA to measure mRNA and protein levels. Mouse peritoneal macrophages were isolated for lipopolysaccharide (LPS) stimulation and glibenclamide treatment followed by ELISA, Western blot, and Transwell assays. RESULTS: Glibenclamide inhibited transplant-induced arteriosclerosis in vivo. Morphologically, glibenclamide reduced inflammatory cell accumulation and collagen deposition in the aortas. At the gene level, glibenclamide suppressed aortic cytokine mRNA levels, including interleukin-1ß (IL-1ß; 10.64 ± 3.19 vs. 23.77 ± 5.72; P < .05), tumor necrosis factor-α (TNF-α; 4.59 ± 0.78 vs. 13.89 ± 5.42; P < .05), and monocyte chemoattractant protein-1 (MCP-1; 202.66 ± 23.44 vs. 1172.73 ± 208.80; P < .01), while IL-1ß, TNF-α, and MCP-1 levels were also reduced in the mouse sera two weeks after glibenclamide treatment (IL-1ß, 39.40 ± 13.56 ng/ml vs. 78.96 ± 9.39 ng/ml; P < .01; TNF-α, 52.60 ± 13.00 ng/ml vs. 159.73 ± 6.76 ng/ml; P < .01; and MCP-1, 56.60 ± 9.07 ng/ml vs. 223.07 ± 36.28 ng/ml; P < .001). Furthermore, glibenclamide inhibited macrophage expression and secretion of inflammatory factors in vitro through suppressing activation of the nuclear factor-κB (NF-κB) pathway and MCP-1 production. CONCLUSION: Glibenclamide protected against aorta transplantation-induced arteriosclerosis by reducing inflammatory factors in vivo and inhibited macrophage migration and MCP-1 production in vitro.


Assuntos
Arteriosclerose/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Quimiocina CCL2/antagonistas & inibidores , Regulação da Expressão Gênica/efeitos dos fármacos , Glibureto/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Transplante de Órgãos/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Arteriosclerose/etiologia , Arteriosclerose/metabolismo , Arteriosclerose/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Feminino , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
15.
J Cell Physiol ; 235(3): 2478-2491, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31489966

RESUMO

Thoracic aortic aneurysm (TAA), a serious cardiovascular disease that causes morbidity and mortality worldwide. At present, few biomarkers can accurately diagnose the appearance of TAA before dissection or rupture. Our research has the intention to investigate the developing applicable biomarkers for TAA promising clinically diagnostic biomarkers or probable regulatory targets for TAA. In our research, we built correlation networks utilizing the expression profile of peripheral blood mononuclear cell obtained from a public microarray data set (GSE9106). Furthermore, we chose the turquoise module, which has the strongest significance with TAA and was further analyzed. Fourteen genes that overlapped with differentially expressed proteins in the medial aortic layer were obtained. Subsequently, we verified the results applying quantitative polymerase chain reaction (Q-PCR) to our clinical specimen. In general, the Q-PCR results coincide with the majority of the expression profile. Fascinatingly, a notable change occurred in CLU, DES, MYH10, and FBLN5. In summary, using weighted gene coexpression analysis, our study indicates that CLU, DES, MYH10, and FBLN5 were identified and validated to be related to TAA and might be candidate biomarkers or therapeutic targets for TAA.


Assuntos
Aneurisma da Aorta Torácica/sangue , Clusterina/sangue , Desmina/sangue , Proteínas da Matriz Extracelular/sangue , Cadeias Pesadas de Miosina/sangue , Miosina não Muscular Tipo IIB/sangue , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Biomarcadores/sangue , Proteínas da Matriz Extracelular/genética , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Transcriptoma/genética
16.
Int Immunopharmacol ; 75: 105789, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31401377

RESUMO

BACKGROUND: Sepsis occurs when an infection triggers deranged inflammatory responses. There exists no efficacious treatment for this condition. The transcriptional repressor B-cell Lymphoma 6 (BCL6) is known to act as an inhibitor of macrophage-mediated inflammatory responses. FX1, a novel specific BCL6 BTB inhibitor, is able to attenuate activity of B cell-like diffuse large B cell lymphoma (ABC-DLBCL). Nevertheless, the effect of FX1 in inflammatory responses and sepsis remains unknown. OBJECTIVES: Here, we explored the effect and potential mechanisms of FX1 on the regulation of LPS-induced inflammatory responses in murine sepsis. METHOD: Mice models of LPS-induced sepsis were monitored for survival rate following FX1 administration. ELISA was used to assess how FX1 administration affected pro-inflammatory cytokines present in macrophages exposed to LPS and in the serum of mice sepsis models. Flow cytometric analysis, Western blot and qRT-PCR were performed to evaluate differences in macrophages immune responses after FX1 pre-treatment. Finally, the affinity of BCL6 binding to downstream target genes was checked by ChIP. RESULTS: The survival rate of mice models of LPS-induced sepsis was improved in following FX1 administration. FX1 decreased the production of inflammatory cytokines, attenuated macrophage infiltration activities and reduced monocytes chemotaxis activities, all of which suggest that FX1 exert anti-inflammatory effects. Mechanistically, FX1 may enhance the affinity of BCL6 binding to downstream target pro-inflammatory genes. CONCLUSIONS: These findings illustrated the anti-inflammatory properties and potential mechanisms of FX1 in sepsis caused by LPS. FX1 could potentially become a new immunosuppressive and anti-inflammatory drug candidate in sepsis therapy.


Assuntos
Anti-Inflamatórios/uso terapêutico , Indóis/uso terapêutico , Lesão Pulmonar/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Sepse/tratamento farmacológico , Tiazolidinedionas/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Movimento Celular/efeitos dos fármacos , Indóis/farmacologia , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Lesão Pulmonar/genética , Lesão Pulmonar/imunologia , Lesão Pulmonar/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Células RAW 264.7 , Sepse/genética , Sepse/imunologia , Sepse/patologia , Tiazolidinedionas/farmacologia
17.
Medicine (Baltimore) ; 98(26): e16276, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31261599

RESUMO

RATIONALE: Total anomalous pulmonary venous return (TAPVR) is a rare condition, accounting for 1% of all congenital heart diseases, and an atypical cardiovascular abnormality in Williams syndrome (WS). Here, we report a rare case of WS combined with infracardiac TAPVR. PATIENT CONCERNS: A female newborn presented shortness of breath and purpura after crying at the age of 10 days. DIAGNOSIS: Based on clinical symptoms and laboratory and echocardiographic findings, the patient was diagnosed with infracardiac TAPVR. INTERVENTIONS: We performed infracardiac total anomalous pulmonary venous connection repair surgery. OUTCOMES: The operation was successful and the patient was discharged from the hospital uneventfully after 2 months of treatment. However, we diagnosed the patient with WS in addition to infracardiac TAPVR 6 months postoperatively. LESSONS: This case demonstrates that patients with WS can have associated infracardiac TAPVR. The postoperative growth patterns and changes in the diameters of the aorta and pulmonary arteries were related closely to our early diagnosis of TAPVR associated with WS.


Assuntos
Anormalidades Múltiplas , Síndrome de Cimitarra/complicações , Síndrome de Williams/complicações , Feminino , Humanos , Recém-Nascido , Síndrome de Cimitarra/diagnóstico por imagem
18.
J Am Heart Assoc ; 7(18): e008604, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30371220

RESUMO

Background Cardiac hypertrophy has been recognized as an important independent risk factor for the development of heart failure and increases the risk of cardiac morbidity and mortality. A disintegrin and metalloprotease 23 (ADAM23), a member of ADAM family, is involved in cancer and neuronal differentiation. Although ADAM23 is expressed in the heart, the role of ADAM23 in the heart and in cardiac diseases remains unknown. Methods and Results We observed that ADAM23 expression is decreased in both failing human hearts and hypertrophic mice hearts. Cardiac-specific conditional ADAM23-knockout mice significantly exhibited exacerbated cardiac hypertrophy, fibrosis, and dysfunction, whereas transgenic mice overexpressing ADAM23 in the heart exhibited reduced cardiac hypertrophy in response to pressure overload. Consistent results were also observed in angiotensin II -induced neonatal rat cardiomyocyte hypertrophy. Mechanistically, ADAM23 exerts anti-hypertrophic effects by specifically targeting the focal adhesion kinase-protein kinase B (FAK-AKT) signaling cascade. Focal adhesion kinase inactivation by inhibitor ( PF -562271) greatly reversed the detrimental effects in ADAM23-knockout mice subjected to aortic banding. Conclusion Altogether, we identified ADAM23 as a negative regulator of cardiac hypertrophy through inhibiting focal adhesion kinase-protein kinase B signaling pathway, which could be a promising therapeutic target for this malady.


Assuntos
Proteínas ADAM/genética , Cardiomegalia/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação da Expressão Gênica , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas ADAM/biossíntese , Animais , Western Blotting , Cardiomegalia/diagnóstico , Cardiomegalia/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Proteínas do Tecido Nervoso/biossíntese , RNA/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA