Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8085, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057306

RESUMO

The lack of desirable diffusion barrier layers currently prohibits the long-term stable service of bismuth telluride thermoelectric devices in low-grade waste heat recovery. Here we propose a new design principle of barrier layers beyond the thermal expansion matching criterion. A titanium barrier layer with loose structure is optimized, in which the low Young's modulus and particle sliding synergistically alleviates interfacial stress, while the TiTe2 reactant enables metallurgical bonding and ohmic contact between the barrier layer and the thermoelectric material, leading to a desirable interface characterized by high-thermostability, high-strength, and low-resistivity. Highly competitive conversion efficiency of 6.2% and power density of 0.51 W cm-2 are achieved for a module with leg length of 2 mm at the hot-side temperature of 523 K, and no degradation is observed following operation for 360 h, a record for stable service at this temperature, paving the way for its application in low-grade waste heat recovery.

2.
ACS Appl Mater Interfaces ; 13(18): 21888-21897, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33909403

RESUMO

Bioinspired materials for temperature regulation have proven to be promising for passive radiation cooling, and super water repellency is also a main feature of biological evolution. However, the scalable production of artificial passive radiative cooling materials with self-adjusting structures, high-efficiency, strong applicability, and low cost, along with achieving superhydrophobicity simultaneously remains a challenge. Here, a biologically inspired passive radiative cooling dual-layer coating (Bio-PRC) is synthesized by a facile but efficient strategy, after the discovery of long-horned beetles' thermoregulatory behavior with multiscale fluffs, where an adjustable polymer-like layer with a hierarchical micropattern is constructed in various ceramic bottom skeletons, integrating multifunctional components with interlaced "ridge-like" architectures. The Bio-PRC coating reflects above 88% of solar irradiance and demonstrates an infrared emissivity >0.92, which makes the temperature drop by up to 3.6 °C under direct sunlight. Moreover, the hierarchical micro-/nanostructures also endow it with a superhydrophobic surface that has enticing damage resistance, thermal stability, and weatherability. Notably, we demonstrate that the Bio-PRC coatings can be potentially applied in the insulated gate bipolar transistor radiator, for effective temperature conditioning. Meanwhile, the coverage of the dense, super water-repellent top polymer-like layer can prevent the transport of corrosive liquids, ions, and electron transition, illustrating the excellent interdisciplinary applicability of our coatings. This work paves a new way to design next-generation thermal regulation coatings with great potential for applications.

3.
ACS Appl Mater Interfaces ; 12(49): 54963-54971, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33226211

RESUMO

Daytime radiative cooling can spontaneously cool an object by reflecting sunlight and radiating heat in the form of infrared rays. Current daytime radiative cooling designs, including photonic structures and organic polymer-dielectric systems, are prone to age and fail under harsh conditions including high temperature, mechanical wear, and/or space irradiation. Here, an all-inorganic phosphoric acid-based geopolymer (PGEO) paint was developed and showed robust radiative cooling performance. This versatile suspension paint can be applied directly to diverse surfaces through scalable techniques such as spray coating and brushing. This inorganic coating possesses a high average hemispherical infrared emissivity >0.95 and reflects nearly 90% of solar irradiance. We attributed this excellent spectral selectivity of the PGEO coating to its unique inorganic geopolymer network (-Si-O-Al-O-P-O-), which settled the vibration intensity in a suitable range (0.2 < k < 1) and enabled multimode vibration. Moreover, this inorganic coating exhibits good comprehensive performance in terms of heat endurance, mechanical strength, and resistance to intense proton radiation, showing its promising applications in spacecraft, buildings, and communication base stations.

4.
ACS Appl Mater Interfaces ; 12(31): 35502-35512, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32672926

RESUMO

Artificial superhydrophobic coatings with mechanical stability, chemical stability, and strong adhesion have been achieved separately. However, a simultaneous demonstration of these features along with stability to high-temperature exposure is challenging. Herein, inspired by the micro/nanoscale hierarchical superhydrophobic surfaces of solid cactus plants, we propose a novel plasma-enhanced high temperature liquid-phase-assisted oxidation and crosslinking (PHLOC) in-situ co-growth strategy to design superhydrophobic nanocomposite coatings on metals based on organic-inorganic multilayer structures in which PTFE nanoparticles cross-linked to form a compact top layer with hierarchical surface textures on a ceramic skeleton with a papilla array, integrating multiple robust wettability characteristics with mechanochemical strength to isolate the underlying materials from the external environment. Remarkably, the superhydrophobic coating exhibits strong mechanical robustness undergoing the 120th linear abrasion or 40th rotary abrasion cycle and can be applied on large area and arbitrary shapes of metal substrates. Moreover, the samples sustain exposure to highly corrosive media, namely, aqua regia, sodium hydroxide solutions, and simulated seawater solution, to reflect long-term chemical robustness. More importantly, the multilayer coating demonstrates excellent high-temperature endurance, thermal cycling stability of 500 °C, and thermal repairability of superhydrophobicity. With multifaceted robustness and scalability, the superhydrophobic multilayer coating should find potential usage in the field of high-tech equipment with severe alternating or impact loads, high-temperature service, and chemical corrosion.

5.
Inorg Chem ; 46(3): 604-6, 2007 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-17256998

RESUMO

We have described an unprecedented three-dimensional zeolite-like copper iodide constructed from Cu4I4(DABCO)4 (DABCO = 1,4-diazabicyclo[2.2.2]octane) supertetrahedron units. This compound forms a four-connected network with new 6(6) topology. Its structure reveals one-dimensional channels along the [001] direction, and the framework displays interesting self-penetration. The title compound shows photoluminescence at room temperature in the solid state.

6.
Inorg Chem ; 43(2): 559-65, 2004 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-14731017

RESUMO

A 0D vanadium borophosphate [Co(en)(3)](2)[V(3)P(3)BO(19)][H(2)PO(4)].4H(2)O (1) and two 1D vanadium oxides [Co(en)(3)][V(3)O(9)].H(2)O (2) and [Co(dien)(2)][V(3)O(9)].H(2)O (3) have been synthesized hydrothermally from the reaction mixture of V(2)O(5)-H(3)PO(4)-H(3)BO(3)-CoCl(2)-R-H(2)O at 110 degrees C (R: en or dien). The complex cations Co(en)(3)(3+) and Co(dien)(2)(3+) are cooperatively organized in the reaction medium to play a structure-directing role in the formation of the inorganic clusters and chains. The structures are determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, ICP, and TG analyses. The structure of 1 contains isolated [V(3)P(3)BO(19)](5)(-) cluster anions, H(2)PO(4)(-) anions, racemic Co(en)(3)(3+) cations, and H(2)O molecules, which form a complex H-bond network. 2 and 3 both contain chains of corner-sharing VO(4) tetrahedra running along the 2(1) screw axis. The complex cations located in the interchain region interact with the chains through H-bonds. 2 is crystallized in an enantiomorphic space group and only one enantiomer of Co(en)(3)(3+) is involved in the structure. Crystal data: 1, monoclinic, C2/c, a = 32.8492(14) A, b = 11.9601(3) A, c = 22.6001(7) A, beta = 108.9630(8) degrees, Z = 8; 2, orthorhombic, P2(1)2(1)2(1), a = 8.1587(16) A, b = 12.675(3) A, c = 18.046(4) A, Z = 4; 3, monoclinic, P2(1)/c, a = 16.1663(10) A, b = 8.7028(3) A, c = 13.9773(5) A, beta = 103.1340(18) degrees, Z = 4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA