Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Inst Mech Eng H ; : 9544119241272782, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180409

RESUMO

The selection of internal fixation as the primary fixation modality for the patient is one of the challenges for the surgeon treating the patient in question. A model of the lateral tibial plateau fracture was established. Three different configurations of internal fixators namely L bone plate, T bone plate, and screw-washer were analyzed. Three stages after surgery were simulated to assess the displacement of bone plates, screws, washers, and the stress shielding ratio in the fracture area.At three stages after surgery, the T bone plate showed better stability for patients during rehabilitation compared with the remaining two schemes, and the screw-washer scheme was the least stable due to the larger internal fixation displacement and stress shielding ratio in the fracture area. In contrast, the L bone plate scheme showed better stability in the early stages after surgery but was second only to the screw-washer scheme in the middle and late stages after surgery. The T bone plate showed better stability and became a new selection for surgeons to treat related patients. At three stages after surgery, the T bone plate has better biomechanical stability compared to the L bone plate and screw-washer schemes.

2.
Phys Eng Sci Med ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008261

RESUMO

An improved Finite Element Model(FEM) is applied to compare the biomechanical stability of plates with three different options in the treatment of distal fibula fractures in this study. The Computed Tomography(CT) scan of the knee to ankle segment of a volunteer was performed. A 3D fibula FEM was reconstructed based on the CT data. Three different loads (uni-pedal standing, torsion, and twisting) were applied, the same as in the experiments in the literature. The stresses and strains of the three options were compared under the same loads, using a 4-hole locking plate (Option A), a 5-hole locking plate (Option B), and a 6-hole locking plate (Option C) in a standard plate for lateral internal fixation. The simulation results show that all three options showed a stress masking effect. Option C had the best overall biomechanical performance and could effectively distribute the transferred weight. This is because option C has greater torsional stiffness and better biomechanical stability than options A and B, and therefore, option C is the recommended internal fixation method for distal fibula fractures. The Finite Element Analysis(FEA) method developed in this work applies to the stress analysis of fracture treatment options in other body parts.

3.
Proc Inst Mech Eng H ; 238(2): 207-218, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38235731

RESUMO

A finite element model with realistic bone geometries is developed to design optimal internal fixation during the fibula healing process in this study. The effect of bone plate parameters on fibula fracture healing is studied. The relationship between differences in plate length, thickness and working length, and bone healing performance is focused. The optimal combination form of the bone plate parameters was selected by the orthogonal experimental design and fracture block strain to achieve bone healing maximize the performance. The model results show that the maximum equivalent force of the bone plate was below the material yield limit; the higher mean contact stresses in the bone fragments indicate that the bone plate is prone to higher contact stresses when they are long. The working length of the bone plate has a greater effect on callus healing than the thickness and length of the bone plate. The optimal internal fixation option for distal fibula fractures is achieved when it provides the stability required for internal fixation during bone healing. It ensures lower contact stresses in the fibula as well as maximum Young's modulus during callus healing process.


Assuntos
Fíbula , Fixação Interna de Fraturas , Fíbula/cirurgia , Análise de Elementos Finitos , Placas Ósseas , Consolidação da Fratura , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA