Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 41(8): 1599-1611, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39044046

RESUMO

PURPOSE: We investigated whether short term infusion of propofol, a highly lipophilic agonist at GABAA receptors, which is in widespread clinical use as anesthetic and sedative, affects passive blood-brain barrier (BBB) permeability in vivo. METHODS: Mice were anesthetized with an intraperitoneal injection of ketamine/xylazine followed by a continuous IV infusion of propofol in lipid emulsion through a tail vein catheter. Control groups received ketamine/xylazine anesthesia and an infusion of Intralipid, or ketamine/xylazine anesthesia only. [13C12]sucrose as a permeability marker was injected as IV bolus 15 min after start of the infusions. Brain uptake clearance, Kin, of sucrose was calculated from the brain concentrations at 30 min and the area under the plasma-concentration time curve. We also measured the plasma and brain concentration of propofol at the terminal time point. RESULTS: The Kin value for propofol-infused mice was significantly higher, by a factor of 1.55 and 1.87, compared to the Intralipid infusion and the ketamine/xylazine groups, respectively, while the control groups were not significantly different. No difference was seen in the expression levels of tight junction proteins in brain across all groups. The propofol plasma concentration at the end of infusion (10.7 µM) matched the clinically relevant range of blood concentrations reported in humans, while concentration in brain was 2.5-fold higher than plasma. CONCLUSIONS: Propofol at clinical plasma concentrations acutely increases BBB permeability, extending our previous results with volatile anesthetics to a lipophilic injectable agent. This prompts further exploration, potentially refining clinical practices and ensuring safety, especially during extended propofol infusion schemes.


Assuntos
Barreira Hematoencefálica , Propofol , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Propofol/farmacocinética , Propofol/administração & dosagem , Propofol/farmacologia , Camundongos , Masculino , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Anestésicos Intravenosos/farmacocinética , Anestésicos Intravenosos/administração & dosagem , Anestésicos Intravenosos/farmacologia , Xilazina/farmacologia , Ketamina/farmacologia , Ketamina/administração & dosagem , Ketamina/farmacocinética , Sacarose/administração & dosagem , Camundongos Endogâmicos C57BL , Permeabilidade/efeitos dos fármacos
2.
Pharmaceutics ; 16(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276505

RESUMO

We have recently shown that the volatile anesthetics isoflurane and sevoflurane acutely enhance the brain uptake of the hydrophilic markers sucrose and mannitol about two-fold from an awake condition, while the combined injection of the anesthetic agents ketamine and xylazine has no effect. The present study investigated two small-molecule hydrophilic drugs with potential neurotoxicity, the antibiotic agents ceftazidime and gentamicin. Transport studies using an in vitro blood-brain barrier (BBB) model, a monolayer of induced pluripotent stem cell-derived human brain microvascular endothelial cells seeded on Transwells, and LC-MS/MS analysis demonstrated the low permeability of both drugs in the range of sucrose, with permeability coefficients of 6.62 × 10-7 ± 2.34 × 10-7 cm/s for ceftazidime and 7.38 × 10-7 ± 2.29 × 10-7 cm/s for gentamicin. In vivo brain uptake studies of ceftazidime or gentamicin after IV doses of 25 mg/kg were performed in groups of 5-6 mice anesthetized at typical doses for surgical procedures with either isoflurane (1.5-2% v/v) or ketamine/xylazine (100:10 mg/kg I.P.). The brain uptake clearance, Kin, for ceftazidime increased from 0.033 ± 0.003 µL min-1 g-1 in the ketamine/xylazine group to 0.057 ± 0.006 µL min-1 g-1 in the isoflurane group (p = 0.0001), and from 0.052 ± 0.016 µL min-1 g-1 to 0.101 ± 0.034 µL min-1 g-1 (p = 0.0005) for gentamicin. We did not test the dose dependency of the uptake, because neither ceftazidime nor gentamicin are known substrates of any active uptake or efflux transporters at the BBB. In conclusion, the present study extends our previous findings with permeability markers and suggests that inhalational anesthetic isoflurane increases the BBB permeability of hydrophilic small-molecule endobiotics or xenobiotics when compared to the injection of ketamine/xylazine. This may be of clinical relevance in the case of potential neurotoxic substances.

3.
J Pharmacol Exp Ther ; 385(2): 135-145, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36828631

RESUMO

The purpose of this study was to investigate the effects of the volatile anesthetic agents isoflurane and sevoflurane, at clinically relevant concentrations, on the fluidity of lipid membranes and permeability of the blood-brain barrier (BBB). We analyzed the in vitro effects of isoflurane or ketamine using erythrocyte ghosts (sodium fluorescein permeability), monolayers of brain microvascular endothelial cells ([13C]sucrose and fluorescein permeability), or liposomes (fluorescence anisotropy). Additionally, we determined the effects of 30-minute exposure of mice to isoflurane on the brain tight junction proteins. Finally, we investigated in vivo brain uptake of [13C]mannitol and [13C]sucrose after intravenous administration in mice under anesthesia with isoflurane, sevoflurane, or ketamine/xylazine in addition to the awake condition. Isoflurane at 1-mM and 5-mM concentrations increased fluorescein efflux from the erythrocyte ghosts in a concentration-dependent manner. Similarly, in endothelial cell monolayers exposed to 3% (v/v) isoflurane, permeability coefficients rose by about 25% for fluorescein and 40% for [13C]sucrose, whereas transendothelial resistance and cell viability remained unaffected. Although isoflurane caused a significant decrease in liposomes anisotropy values, ketamine/xylazine did not show any effects. Brain uptake clearance (apparent Kin) of the passive permeability markers in vivo in mice approximately doubled under isoflurane or sevoflurane anesthesia compared with either ketamine/xylazine anesthesia or the awake condition. In vivo exposure of mice to isoflurane did not change any of the brain tight junction proteins. Our data support membrane permeabilization rather than loosening of intercellular tight junctions as an underlying mechanism for increased permeability of the endothelial cell monolayers and the BBB in vivo. SIGNIFICANCE STATEMENT: The blood-brain barrier controls the entry of endogenous substances and xenobiotics from the circulation into the central nervous system. Volatile anesthetic agents like isoflurane alter the lipid structure of cell membranes, transiently facilitating the brain uptake of otherwise poorly permeable, hydrophilic small molecules. Clinical implications may arise when potentially neurotoxic drugs gain enhanced access to the central nervous system under inhalational anesthetics.


Assuntos
Anestésicos Inalatórios , Anestésicos , Isoflurano , Ketamina , Camundongos , Animais , Isoflurano/farmacologia , Barreira Hematoencefálica/metabolismo , Sevoflurano/metabolismo , Sevoflurano/farmacologia , Células Endoteliais/metabolismo , Xilazina/metabolismo , Xilazina/farmacologia , Lipossomos , Anestésicos/farmacologia , Anestésicos Inalatórios/farmacologia , Anestésicos Inalatórios/metabolismo , Junções Íntimas/metabolismo , Permeabilidade , Proteínas de Junções Íntimas/metabolismo , Fluoresceínas , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA