Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(18): 9672-9689, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638761

RESUMO

Enhancer activation by the MLR family of H3K4 mono-methyltransferases requires proper recognition of histones for the deposition of the mono-methyl mark. MLR proteins contain two clusters of PHD zinc finger domains implicated in chromatin regulation. The second cluster is the most highly conserved, preserved as an ancient three finger functional unit throughout evolution. Studies of the isolated 3rd PHD finger within this cluster suggested specificity for the H4 [aa16-20] tail region. We determined the histone binding properties of the full three PHD finger cluster b module (PHDb) from the Drosophila Cmi protein which revealed unexpected recognition of an extended region of H3. Importantly, the zinc finger spacer separating the first two PHDb fingers from the third is critical for proper alignment and coordination among fingers for maximal histone engagement. Human homologs, MLL3 and MLL4, also show conservation of H3 binding, expanding current views of histone recognition for this class of proteins. We further implicate chromatin remodeling by the SWI/SNF complex as a possible mechanism for the accessibility of PHDb to globular regions of histone H3 beyond the tail region. Our results suggest a two-tail histone recognition mechanism by the conserved PHDb domain involving a flexible hinge to promote interdomain coordination.

2.
Dev Biol ; 468(1-2): 41-53, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32946789

RESUMO

The conserved MLR COMPASS-like complexes are histone modifiers that are recruited by a variety of transcription factors to enhancer regions where they act as necessary epigenetic tools for enhancer establishment and function. A critical in vivo target of the Drosophila MLR complex is the bantam miRNA that regulates cell survival and functions in feedback regulation of cellular signaling pathways during development. We determine that loss of Drosophila MLR complex function in developing wing and eye imaginal discs results in growth and patterning defects that are sensitive to bantam levels. Consistent with an essential regulatory role in modulating bantam transcription, the MLR complex binds to tissue-specific bantam enhancers and contributes to fine-tuning expression levels during larval tissue development. In wing imaginal discs, the MLR complex attenuates bantam enhancer activity by negatively regulating expression; whereas, in differentiating eye discs, the complex exerts either positive or negative regulatory activity on bantam transcription depending on cell fate. Furthermore, while the MLR complex is not required to control bantam levels in undifferentiated eye cells anterior to the morphogenetic furrow, it serves to prepare critical enhancer control of bantam transcription for later regulation upon differentiation. Our investigation into the transcriptional regulation of a single target in a developmental context has provided novel insights as to how the MLR complex contributes to the precise timing of gene expression, and how the complex functions to help orchestrate the regulatory output of conserved signaling pathways during animal development.


Assuntos
Diferenciação Celular , Elementos Facilitadores Genéticos , Olho/embriologia , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/biossíntese , Complexos Multiproteicos/metabolismo , Animais , Drosophila melanogaster , MicroRNAs/genética , Complexos Multiproteicos/genética
3.
Nucleic Acids Res ; 48(7): 3476-3495, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32052053

RESUMO

The MLR COMPASS complex monomethylates H3K4 that serves to epigenetically mark transcriptional enhancers to drive proper gene expression during animal development. Chromatin enrichment analyses of the Drosophila MLR complex reveals dynamic association with promoters and enhancers in embryos with late stage enrichments biased toward both active and poised enhancers. RNAi depletion of the Cmi (also known as Lpt) subunit that contains the chromatin binding PHD finger domains attenuates enhancer functions, but unexpectedly results in inappropriate enhancer activation during stages when hormone responsive enhancers are poised, revealing critical epigenetic roles involved in both the activation and repression of enhancers depending on developmental context. Cmi is necessary for robust H3K4 monomethylation and H3K27 acetylation that mark active enhancers, but not for the chromatin binding of Trr, the MLR methyltransferase. Our data reveal two likely major regulatory modes of MLR function, contributions to enhancer commissioning in early embryogenesis and bookmarking enhancers to enable rapid transcriptional re-activation at subsequent developmental stages.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Coativadores de Receptor Nuclear/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Ecdisona/farmacologia , Histona-Lisina N-Metiltransferase/metabolismo , Coativadores de Receptor Nuclear/fisiologia , Regiões Promotoras Genéticas , Ativação Transcricional
4.
Dev Biol ; 380(2): 185-98, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23707261

RESUMO

Drosophila Cara Mitad (Cmi, also known as Lpt) is the N-terminal homolog of mammalian Mixed Lineage Leukemia 2 (MLL2/ALR), a core component of COMPASS-like nuclear receptor coactivator complexes. Cmi is required for the activation of ecdysone hormone targets and plays a critical role in development and tissue patterning. Using multiple approaches that include genetic interaction tests and tissue specific knockdown and overexpression of cmi, we demonstrate that Cmi has important functions in controlling wing vein patterning through regulation of the conserved Decapentaplegic (Dpp) signaling pathway. The loss of function allele, cmi(1), enhances loss of dpp function phenotypes in genetic epistasis tests. Wing specific knockdown of cmi results in incomplete veins towards the distal wing margin that are enhanced by the simultaneous knockdown of dpp. In contrast, the overexpression of a tagged full-length HA-cmi transgene results in ectopic veins that are sensitive to Dpp levels. The knockdown and overexpression of cmi result in reduced and increased Dpp signaling as observed by immunostaining for phospho-MAD (Mother against DPP), a downstream effector of Dpp function. shRNAi depletion of cmi suppresses a tkv reduced function phenotype while the overexpression of HA-cmi enhances tkv RNAi phenotypes. We further show by enhancer reporter assays and chromatin immunoprecipitation that Cmi controls wing vein patterning by regulating dpp transcription directly or indirectly through the 3' disc regulatory region at the larval stage and through the 5' shortvein (shv) regulatory region at the pupal stage. Our data reveals that Cmi is a key part of the mechanism that controls wing vein patterning through nuclear receptor regulation of the Dpp signaling pathway.


Assuntos
Padronização Corporal , Proteínas Morfogenéticas Ósseas/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Histona-Lisina N-Metiltransferase/fisiologia , Coativadores de Receptor Nuclear/fisiologia , Animais , Proteínas de Drosophila/genética , Proteínas Hedgehog/genética , Transdução de Sinais , Transcrição Gênica , Fator de Crescimento Transformador beta/fisiologia , Asas de Animais/embriologia
5.
Genesis ; 51(1): 16-31, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22965777

RESUMO

The choice and timing of specific developmental pathways in organogenesis are determined by tissue-specific temporal and spatial cues that are acted upon to impart unique cellular and compartmental identities. A consequence of cellular signaling is the rapid transcriptional reprogramming of a wide variety of target genes. To overcome intrinsic epigenetic chromatin barriers to transcription modulation, histone modifying and remodeling complexes are employed. The deposition or erasure of specific covalent histone modifications, including acetylation, methylation, and ubiquitination are essential features of gene activation and repression. We have found that the activity of a specific class of histone demethylation enzymes is required for the specification of vein cell fates during Drosophila wing development. Genetic tests revealed that the Drosophila LSD1-CoREST complex is required for proper cell specification through regulation of the DPP/TGFß pathway. An important finding from this analysis is that LSD1-CoREST functions through control of rhomboid expression in an EGFR-independent pathway.


Assuntos
Proteínas Correpressoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/enzimologia , Oxirredutases N-Desmetilantes/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular/genética , Proteínas Correpressoras/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Células Endoteliais/citologia , Proteínas de Membrana/metabolismo , Oxirredutases N-Desmetilantes/genética , Transdução de Sinais/genética , Veias/citologia , Asas de Animais/crescimento & desenvolvimento
6.
Development ; 139(11): 1997-2008, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22569554

RESUMO

MLL2 and MLL3 histone lysine methyltransferases are conserved components of COMPASS-like co-activator complexes. In vertebrates, the paralogous MLL2 and MLL3 contain multiple domains required for epigenetic reading and writing of the histone code involved in hormone-stimulated gene programming, including receptor-binding motifs, SET methyltransferase, HMG and PHD domains. The genes encoding MLL2 and MLL3 arose from a common ancestor. Phylogenetic analyses reveal that the ancestral gene underwent a fission event in some Brachycera dipterans, including Drosophila species, creating two independent genes corresponding to the N- and C-terminal portions. In Drosophila, the C-terminal SET domain is encoded by trithorax-related (trr), which is required for hormone-dependent gene activation. We identified the cara mitad (cmi) gene, which encodes the previously undiscovered N-terminal region consisting of PHD and HMG domains and receptor-binding motifs. The cmi gene is essential and its functions are dosage sensitive. CMI associates with TRR, as well as the EcR-USP receptor, and is required for hormone-dependent transcription. Unexpectedly, although the CMI and MLL2 PHDf3 domains could bind histone H3, neither showed preference for trimethylated lysine 4. Genetic tests reveal that cmi is required for proper global trimethylation of H3K4 and that hormone-stimulated transcription requires chromatin binding by CMI, methylation of H3K4 by TRR and demethylation of H3K27 by the demethylase UTX. The evolutionary split of MLL2 into two distinct genes in Drosophila provides important insight into distinct epigenetic functions of conserved readers and writers of the histone code.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Evolução Molecular , Regulação da Expressão Gênica/genética , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo , Animais , Imunoprecipitação da Cromatina , Drosophila/genética , Genes Essenciais/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Imunoprecipitação , Metilação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Nucleic Acids Res ; 40(13): 5975-87, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22467207

RESUMO

Nucleosome remodeling catalyzed by the ATP-dependent SWI/SNF complex is essential for regulated gene expression. Transcriptome profiling studies in flies and mammals identified cell cycle and hormone responsive genes as important targets of remodeling complex activities. Loss of chromatin remodeling function has been linked to developmental abnormalities and aggressive cancers. The Drosophila Brahma (Brm) SWI/SNF complex assists in reprogramming and coordinating gene expression in response to ecdysone hormone signaling at critical points during development. We used RNAi knockdown in cultured cells and transgenic flies, and conditional mutant alleles to identify unique and important functions of two conserved Brm complex core subunits, SNR1/SNF5 and BRM/SNF2-SWI2, on target gene regulation. Unexpectedly, we found that incorporation of a loss of function SNR1 subunit led to alterations in RNA polymerase elongation, pre-mRNA splicing regulation and chromatin accessibility of ecdysone hormone regulated genes, revealing that SNR1 functions to restrict BRM-dependent nucleosome remodeling activities downstream of the promoter region. Our results reveal critically important roles of the SNR1/SNF5 subunit and the Brm chromatin remodeling complex in transcription regulation during elongation by RNA Polymerase II and completion of pre-mRNA transcripts that are dependent on hormone signaling in late development.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Montagem e Desmontagem da Cromatina , Proteínas de Drosophila/fisiologia , Drosophila/genética , Splicing de RNA , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromatina/metabolismo , Desoxirribonucleases/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ecdisona/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Ativação Transcricional , Fatores de Elongação da Transcrição/metabolismo
8.
Genes Chromosomes Cancer ; 50(6): 379-88, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21412926

RESUMO

The most common microdeletion in humans involves the 22q11 region. Congenital anomalies associated with 22q11 loss include cardiac and facial defects. Less frequent is the co-presentation of malignant rhabdoid tumors that are highly aggressive childhood malignancies typically found in renal or extra-renal soft tissues and central nervous system. A newborn patient presented with multiple congenital anomalies consistent with 22q11 deletion syndrome including cleft lip and palate, ear tags and ventricular septal defects co-presenting with an axillary rhabdoid tumor. Comparative genomic hybridization revealed a 2.8 Mb germline deletion in the 22q11.2 region containing genes required for normal fetal development and the SMARCB1 tumor suppressor gene. Analysis of tumor DNA revealed a somatic deletion of exon 7 in the second allele of SMARCB1. Expression of SMARCB1 was absent, while tumor markers including MYC, GFAP, and CLAUDIN-6 were upregulated. The presence of tandem oriented BCRL modules located within interspersed low copy repeat elements throughout the 22q11 distal region may predispose this area for microdeletions through nonalleleic homologous recombination.


Assuntos
Anormalidades Múltiplas/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Síndrome de DiGeorge/genética , Tumor Rabdoide/genética , Fatores de Transcrição/genética , Alelos , Deleção Cromossômica , Cromossomos Humanos Par 22/genética , Genes Supressores de Tumor , Mutação em Linhagem Germinativa , Humanos , Recém-Nascido , Masculino , Recombinação Genética/genética , Proteína SMARCB1
9.
Dev Biol ; 350(2): 534-47, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21146519

RESUMO

The conserved SWI/SNF chromatin remodeling complex uses the energy from ATP hydrolysis to alter local chromatin environments through disrupting DNA-histone contacts. These alterations influence transcription activation, as well as repression. The Drosophila SWI/SNF counterpart, known as the Brahma or Brm complex, has been shown to have an essential role in regulating the proper expression of many developmentally important genes, including those required for eye and wing tissue morphogenesis. A temperature sensitive mutation in one of the core complex subunits, SNR1 (SNF5/INI1/SMARCB1), results in reproducible wing patterning phenotypes that can be dominantly enhanced and suppressed by extragenic mutations. SNR1 functions as a regulatory subunit to modulate chromatin remodeling activities of the Brahma complex on target genes, including both activation and repression. To help identify gene targets and cofactors of the Brahma complex, we took advantage of the weak dominant nature of the snr1(E1) mutation to carry out an unbiased genetic modifier screen. Using a set of overlapping chromosomal deficiencies that removed the majority of the Drosophila genome, we looked for genes that when heterozygous would function to either enhance or suppress the snr1(E1) wing pattern phenotype. Among potential targets of the Brahma complex, we identified components of the Notch, EGFR and DPP signaling pathways important for wing development. Mutations in genes encoding histone demethylase enzymes were identified as cofactors of Brahma complex function. In addition, we found that the Lysine Specific Demethylase 1 gene (lsd1) was important for the proper cell type-specific development of wing patterning.


Assuntos
Proteínas Correpressoras/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/crescimento & desenvolvimento , Oxirredutases N-Desmetilantes/fisiologia , Ribonucleoproteína Nuclear Pequena U1/fisiologia , Asas de Animais/crescimento & desenvolvimento , Animais , Proteínas de Ciclo Celular/fisiologia , Células Cultivadas , Fatores de Transcrição/fisiologia
10.
J Biol Chem ; 281(46): 35305-15, 2006 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-16990270

RESUMO

Metazoan SWI/SNF chromatin remodeling complexes exhibit ATP-dependent activation and repression of target genes. The Drosophila Brahma (SWI/SNF) complex subunits BRM and SNR1 are highly conserved with direct counterparts in yeast (SWI2/SNF2 and SNF5) and mammals (BRG1/hBRM and INI1/hSNF5). BRM encodes the catalytic ATPase required for chromatin remodeling and SNR1 is a regulatory subunit. Importantly, SNR1 mediates ATP-independent repression functions of the complex in cooperation with histone deacetylases and direct contacts with gene-specific repressors. SNR1 and INI1, as components of their respective SWI/SNF complexes, are important for developmental growth control and patterning, with direct function as a tumor suppressor. To identify direct regulatory targets of the Brm complex, we performed oligonucleotide-based transcriptome microarray analyses using RNA isolated from mutant fly strains harboring dominant-negative alleles of snr1 and brm. Steady-state RNA isolated from early pupae was examined, as this developmental stage critically requires Brm complex function. We found the hormone-responsive Ecdysone-induced genes (Eig) were strongly misregulated and that the Brm complex is directly associated with the promoter regions of these genes in vivo. Our results reveal that the Brm complex assists in coordinating hormone-dependent transcription regulation of the Eig genes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Ecdisona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Transativadores/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cromatina/metabolismo , Proteínas de Drosophila/genética , Perfilação da Expressão Gênica , Genes de Insetos/genética , Larva/metabolismo , Mutação , Pupa/metabolismo , Interferência de RNA , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Genetics ; 168(1): 199-214, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15454538

RESUMO

SNR1 is an essential subunit of the Drosophila Brahma (Brm) ATP-dependent chromatin remodeling complex, with counterparts in yeast (SNF5) and mammals (INI1). Increased cell growth and wing patterning defects are associated with a conditional snr1 mutant, while loss of INI1 function is directly linked with aggressive cancers, suggesting important roles in development and growth control. The Brm complex is known to function during G1 phase, where it appears to assist in restricting entry into S phase. In Drosophila, the activity of DmcycE/CDK2 is rate limiting for entry into S phase and we previously found that the Brm complex can suppress a reduced growth phenotype associated with a hypomorphic DmcycE mutant. Our results reveal that SNR1 helps mediate associations between the Brm complex and DmcycE/CDK2 both in vitro and in vivo. Further, disrupting snr1 function suppressed DmcycEJP phenotypes, and increased cell growth defects associated with the conditional snr1E1 mutant were suppressed by reducing DmcycE levels. While the snr1E1-dependent increased cell growth did not appear to be directly associated with altered expression of G1 or G2 cyclins, transcription of the G2-M regulator string/cdc25 was reduced. Thus, in addition to important functions of the Brm complex in G1-S control, the complex also appears to be important for transcription of genes required for cell cycle progression.


Assuntos
Proteínas de Ciclo Celular/genética , Processos de Crescimento Celular/fisiologia , Montagem e Desmontagem da Cromatina/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Fenótipo , Transativadores/genética , Fatores de Transcrição/fisiologia , Animais , Quinases relacionadas a CDC2 e CDC28/metabolismo , Ciclo Celular/fisiologia , Processos de Crescimento Celular/genética , Quinase 2 Dependente de Ciclina , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Fase G1/genética , Fase G1/fisiologia , Glutationa Transferase , Mutação/genética , Proteínas Tirosina Fosfatases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Asas de Animais/anatomia & histologia
12.
Dev Biol ; 267(2): 279-93, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15013794

RESUMO

The Brahma (Brm) complex of Drosophila melanogaster is a SWI/SNF-related chromatin remodeling complex required to correctly maintain proper states of gene expression through ATP-dependent effects on chromatin structure. The SWI/SNF complexes are comprised of 8-11 stable components, even though the SWI2/SNF2 (BRM, BRG1, hBRM) ATPase subunit alone is partially sufficient to carry out chromatin remodeling in vitro. The remaining subunits are required for stable complex assembly and/or proper promoter targeting in vivo. Our data reveals that SNR1 (SNF5-Related-1), a highly conserved subunit of the Brm complex, is required to restrict complex activity during the development of wing vein and intervein cells, illustrating a functional requirement for SNR1 in modifying whole complex activation functions. Specifically, we found that snr1 and brm exhibited opposite mutant phenotypes in the wing and differential misregulation of genes required for vein and intervein cell development, including rhomboid, decapentaplegic, thick veins, and blistered, suggesting possible regulatory targets for the Brm complex in vivo. Our genetic results suggest a novel mechanism for SWI/SNF-mediated gene repression that relies on the function of a 'core' subunit to block or shield BRM (SWI2/SNF2) activity in specific cells. The SNR1-mediated repression is dependent on cooperation with histone deacetylases (HDAC) and physical associations with NET, a localized vein repressor.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Inativação Gênica/fisiologia , Transativadores/metabolismo , Asas de Animais/crescimento & desenvolvimento , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Montagem e Desmontagem da Cromatina/genética , Cruzamentos Genéticos , Primers do DNA , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Componentes do Gene , Imuno-Histoquímica , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Modelos Biológicos , Fenótipo , Fatores de Transcrição/metabolismo , Asas de Animais/citologia , Asas de Animais/metabolismo
13.
Genesis ; 37(2): 76-83, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14595843

RESUMO

Tra2 is a regulator of pre-mRNA splicing and a key component of the Drosophila somatic sex determination pathway. Functional orthologs of this protein are thought to perform nonsex-specific functions essential for viability in both vertebrates and nematodes. Although Drosophila Tra2 is expressed throughout the soma of both sexes, studies on it have focused only on the sex-specific phenotypes of known viable alleles. Here we show that that widely used tra2 mutant alleles have residual activity and are not suitable for evaluating its effect on viability. To test whether Tra2 has an essential role in development, we generated a transposon-induced deletion in critical coding sequences. We find that tra2 deletion adults can survive as well as their heterozygous siblings. Thus, in contrast to other organisms, Tra2 is not required in Drosophila for general viability under laboratory conditions.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Drosophila/metabolismo , Mutação , Ribonucleoproteínas/genética , Diferenciação Sexual , Alelos , Animais , Feminino , Genótipo , Masculino , Deleção de Sequência , Transgenes
14.
Dev Biol ; 253(2): 291-308, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12645932

RESUMO

The snr1 gene of Drosophila melanogaster encodes a conserved component of the multiprotein Brahma (Brm) complex, a counterpart to the SWI/SNF complexes that participate in ATP-dependent chromatin remodeling. Loss-of-function and null mutations in the snr1 gene reveal its essential role in Drosophila development. We identified new mutant alleles and ectopically expressed deleted forms to dissect the specific functions of SNR1. Somatic and germ cell clone analyses confirmed its requirement in a continuous and widespread fashion for proper cell fate determination and oogenesis. Expression of SNR1 transgenes revealed unexpected roles in wing patterning, abdomen development, oogenesis, and sustained adult viability. A widespread distribution of SNR1 and BRM on the salivary gland polytene chromosomes showed that the Brm complex associated with many genes, but not always at transcribed loci, consistent with genetic data suggesting roles in both gene activation and repression. Despite essential Brm complex functions in leg development, genetic and protein localization studies revealed that snr1 was not required or expressed in all tissues dependent on Brm complex activities. Thus, SNR1 is essential for some, but not all Brm functions, and it likely serves as an optional subunit, directing Brm complex activity to specific gene loci or cellular processes.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Transativadores/genética , Fatores de Transcrição/genética , Alelos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiologia , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Masculino , Dados de Sequência Molecular , Mosaicismo , Mutação , Fenótipo , Subunidades Proteicas , Transativadores/química , Transativadores/fisiologia , Fatores de Transcrição/química , Fatores de Transcrição/fisiologia , Ativação Transcricional
15.
Mol Cell Biol ; 23(1): 289-305, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12482982

RESUMO

The Drosophila melanogaster Brahma (Brm) complex, a counterpart of the Saccharomyces cerevisiae SWI/SNF ATP-dependent chromatin remodeling complex, is important for proper development by maintaining specific gene expression patterns. The SNR1 subunit is strongly conserved with yeast SNF5 and mammalian INI1 and is required for full activity of the Brm complex. We identified a temperature-sensitive allele of snr1 caused by a single amino acid substitution in the conserved repeat 2 region, implicated in a variety of protein-protein interactions. Genetic analyses of snr1(E1) reveal that it functions as an antimorph and that snr1 has critical roles in tissue patterning and growth control. Temperature shifts show that snr1 is continuously required, with essential functions in embryogenesis, pupal stages, and adults. Allele-specific genetic interactions between snr1(E1) and mutations in genes encoding other members of the Brm complex suggest that snr1(E1) mutant phenotypes result from reduced Brm complex function. Consistent with this view, SNR1(E1) is stably associated with other components of the Brm complex at the restrictive temperature. SNR1 can establish direct contacts through the conserved repeat 2 region with the SET domain of the homeotic regulator Trithorax (TRX), and SNR1(E1) is partially defective for functional TRX association. As truncating mutations of INI1 are strongly correlated with aggressive cancers, our results support the view that SNR1, and specifically the repeat 2 region, has a critical role in mediating cell growth control functions of the metazoan SWI/SNF complexes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/genética , Divisão Celular/genética , Sequência Conservada , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero , Olho/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Larva , Masculino , Dados de Sequência Molecular , Mutagênese , Sistema Nervoso Periférico/crescimento & desenvolvimento , Sistema Nervoso Periférico/metabolismo , Subunidades Proteicas , Transativadores/genética , Fatores de Transcrição/genética , Veias/crescimento & desenvolvimento , Asas de Animais/irrigação sanguínea , Asas de Animais/crescimento & desenvolvimento
16.
EMBO J ; 21(13): 3377-89, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12093739

RESUMO

Cyclin E-Cdk2 is essential for S phase entry. To identify genes interacting with cyclin E, we carried out a genetic screen using a hypomorphic mutation of Drosophila cyclin E (DmcycE(JP)), which gives rise to adults with a rough eye phenotype. Amongst the dominant suppressors of DmcycE(JP), we identified brahma (brm) and moira (mor), which encode conserved core components of the Drosophila Brm complex that is highly related to the SWI-SNF ATP-dependent chromatin remodeling complex. Mutations in genes encoding other Brm complex components, including snr1 (BAP45), osa and deficiencies that remove BAP60 and BAP111 can also suppress the DmcycE(JP) eye phenotype. We show that Brm complex mutants suppress the DmcycE(JP) phenotype by increasing S phases without affecting DmcycE protein levels and that DmcycE physically interacts with Brm and Snr1 in vivo. These data suggest that the Brm complex inhibits S phase entry by acting downstream of DmcycE protein accumulation. The Brm complex also physically interacts weakly with Drosophila retinoblastoma (Rbf1), but no genetic interactions were detected, suggesting that the Brm complex and Rbf1 act largely independently to mediate G(1) arrest.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Ciclina E/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Fase G1/fisiologia , Fase S/fisiologia , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Alelos , Animais , Animais Geneticamente Modificados , Proteínas de Ciclo Celular/genética , Ciclina E/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Olho/ultraestrutura , Fase G1/genética , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genes Supressores , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/fisiologia , Larva/metabolismo , Larva/ultraestrutura , Substâncias Macromoleculares , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Fenótipo , Mapeamento de Interação de Proteínas , Fase S/genética , Transativadores/genética , Fatores de Transcrição/genética , Transgenes , Asas de Animais/ultraestrutura
17.
Genetics ; 160(3): 1051-65, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11901121

RESUMO

We identified and characterized the Drosophila gene ear (ENL/AF9-related), which is closely related to mammalian genes that have been implicated in the onset of acute lymphoblastic and myelogenous leukemias when their products are fused as chimeras with those of human HRX, a homolog of Drosophila trithorax. The ear gene product is present in all early embryonic cells, but becomes restricted to specific tissues in late embryogenesis. We mapped the ear gene to cytological region 88E11-13, near easter, and showed that it is deleted by Df(3R)ea(5022rx1), a small, cytologically invisible deletion. Annotation of the completed Drosophila genome sequence suggests that this region might contain as many as 26 genes, most of which, including ear, are not represented by mutant alleles. We carried out a large-scale noncomplementation screen using Df(3R)ea(5022rx1) and chemical (EMS) mutagenesis from which we identified seven novel multi-allele recessive lethal complementation groups in this region. An overlapping deficiency, Df(3R)Po(4), allowed us to map several of these groups to either the proximal or the distal regions of Df(3R)ea(5022rx1). One of these complementation groups likely corresponds to the ear gene as judged by map location, terminal phenotype, and reduction of EAR protein levels.


Assuntos
Sequência Conservada , Proteínas de Drosophila , Drosophila melanogaster/genética , Leucemia/genética , Proteínas de Neoplasias , Proteínas Nucleares/genética , Fatores de Transcrição , Animais , Sequência de Bases , Mapeamento Cromossômico , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência , Serina Endopeptidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA