Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 39(2): 238-255, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30504274

RESUMO

Despite their different origins, Drosophila glia and hemocytes are related cell populations that provide an immune function. Drosophila hemocytes patrol the body cavity and act as macrophages outside the nervous system, whereas glia originate from the neuroepithelium and provide the scavenger population of the nervous system. Drosophila glia are hence the functional orthologs of vertebrate microglia, even though the latter are cells of immune origin that subsequently move into the brain during development. Interestingly, the Drosophila immune cells within (glia) and outside (hemocytes) the nervous system require the same transcription factor glial cells deficient/glial cells missing (Glide/Gcm) for their development. This raises the issue of how do glia specifically differentiate in the nervous system, and hemocytes in the procephalic mesoderm. The Repo homeodomain transcription factor and panglial direct target of Glide/Gcm is known to ensure glial terminal differentiation. Here we show that Repo also takes center stage in the process that discriminates between glia and hemocytes. First, Repo expression is repressed in the hemocyte anlagen by mesoderm-specific factors. Second, Repo ectopic activation in the procephalic mesoderm is sufficient to repress the expression of hemocyte-specific genes. Third, the lack of Repo triggers the expression of hemocyte markers in glia. Thus, a complex network of tissue-specific cues biases the potential of Glide/Gcm. These data allow us to revise the concept of fate determinants and help us to understand the bases of cell specification. Both sexes were analyzed.SIGNIFICANCE STATEMENT Distinct cell types often require the same pioneer transcription factor, raising the issue of how one factor triggers different fates. In Drosophila, glia and hemocytes provide a scavenger activity within and outside the nervous system, respectively. While they both require the glial cells deficient/glial cells missing (Glide/Gcm) transcription factor, glia originate from the ectoderm, and hemocytes from the mesoderm. Here we show that tissue-specific factors inhibit the gliogenic potential of Glide/Gcm in the mesoderm by repressing the expression of the homeodomain protein Repo, a major glial-specific target of Glide/Gcm. Repo expression in turn inhibits the expression of hemocyte-specific genes in the nervous system. These cell-specific networks secure the establishment of the glial fate only in the nervous system and allow cell diversification.


Assuntos
Proteínas de Drosophila/genética , Hematopoese/genética , Hematopoese/fisiologia , Proteínas de Homeodomínio/genética , Neuroglia/fisiologia , Animais , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Drosophila , Proteínas de Drosophila/fisiologia , Feminino , Hemócitos/fisiologia , Masculino , Mesoderma/fisiologia , MicroRNAs/genética , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
2.
Insect Biochem Mol Biol ; 87: 45-54, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28633893

RESUMO

The Nimrod gene cluster, located on the second chromosome of Drosophila melanogaster, is the largest synthenic unit of the Drosophila genome. Nimrod genes show blood cell specific expression and code for phagocytosis receptors that play a major role in fruit fly innate immune functions. We previously identified three homologous genes (vajk-1, vajk-2 and vajk-3) located within the Nimrod cluster, which are unrelated to the Nimrod genes, but are homologous to a fourth gene (vajk-4) located outside the cluster. Here we show that, unlike the Nimrod candidates, the Vajk proteins are expressed in cuticular structures of the late embryo and the late pupa, indicating that they contribute to cuticular barrier functions.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insetos , Família Multigênica , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero , Pupa/genética , Pupa/crescimento & desenvolvimento
3.
J Innate Immun ; 7(4): 340-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25659341

RESUMO

We identified and characterized a so far unrecognized cell type, dubbed the multinucleated giant hemocyte (MGH), in the ananassae subgroup of Drosophilidae. Here, we describe the functional and ultrastructural characteristics of this novel blood cell type as well as its characterization with a set of discriminative immunological markers. MGHs are encapsulating cells that isolate and kill the parasite without melanization. They share some properties with but differ considerably from lamellocytes, the encapsulating cells of Drosophila melanogaster, the broadly used model organism in studies of innate immunity. MGHs are nonproliferative effector cells that are derived from phagocytic cells of the sessile tissue and the circulation, but do not exhibit phagocytic activity. In contrast to lamellocytes, MGHs are gigantic cells with filamentous projections and contain many nuclei, which are the result of the fusion of several cells. Although the structure of lamellocytes and MGHs differ remarkably, their function in the elimination of parasites is similar, which is potentially the result of the convergent evolution of interactions between hosts and parasites in different geographic regions. MGHs are highly motile and share several features with mammalian multinucleated giant cells, a syncytium of macrophages formed during granulomatous inflammation.


Assuntos
Movimento Celular/imunologia , Células Gigantes/imunologia , Imunidade Celular , Fagocitose , Animais , Drosophila , Células Gigantes/citologia , Hemócitos
4.
Biol Open ; 4(3): 355-63, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25681394

RESUMO

Eater is an EGF-like repeat transmembrane receptor of the Nimrod family and is expressed in Drosophila hemocytes. Eater was initially identified for its role in phagocytosis of both Gram-positive and Gram-negative bacteria. We have deleted eater and show that it appears to be required for efficient phagocytosis of Gram-positive but not Gram-negative bacteria. However, the most striking phenotype of eater deficient larvae is the near absence of sessile hemocytes, both plasmatocyte and crystal cell types. The eater deletion is the first loss of function mutation identified that causes absence of the sessile hemocyte state. Our study shows that Eater is required cell-autonomously in plasmatocytes for sessility. However, the presence of crystal cells in the sessile compartment requires Eater in plasmatocytes. We also show that eater deficient hemocytes exhibit a cell adhesion defect. Collectively, our data uncovers a new requirement of Eater in enabling hemocyte attachment at the sessile compartment and points to a possible role of Nimrod family members in hemocyte adhesion.

5.
J Immunol Methods ; 398-399: 76-82, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24076361

RESUMO

A new method was established, standardized and validated for screening factors involved in the response to septic injury in Drosophila melanogaster. The method, based on inducing lesion by removing the tarsal segments of the first pair of legs of Drosophila adults and exposing them to different bacteria, imitates injury that often occurs in the natural habitat. The method is easy to perform, highly reproducible and suitable for large-scale genetic screens with the aim of identifying factors involved in host-pathogen interactions. The technique was validated by using mutant variations of different components of the immune response, blood clotting as well as the involvement of a number of genes known to be instrumental in the humoral and cell-mediated immune responses of Drosophila was confirmed. Moreover, the combination of the present method with antibiotic treatment allows the screening of potential antimicrobial drugs in vivo.


Assuntos
Fenômenos Fisiológicos Bacterianos/imunologia , Interações Hospedeiro-Patógeno/genética , Imunidade Celular/genética , Imunidade Humoral/genética , Animais , Fenômenos Fisiológicos Bacterianos/genética , Drosophila melanogaster , Interações Hospedeiro-Patógeno/imunologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia
6.
Fly (Austin) ; 7(4): 263-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23899817

RESUMO

The NimC1 molecule has been described as a phagocytosis receptor, and is being used as a marker for professional phagocytes, the plasmatocytes, in Drosophila melanogaster. In studies including tumor-biology, developmental biology, and cell mediated immunity, monoclonal antibodies (P1a and P1b) to the NimC1 antigen are used. As we observed that these antibodies did not react with plasmatocytes of several strains and genetic combinations, a molecular analysis was performed on the structure of the nimC1 gene. In these strains we found 2 deletions and an insertion within the nimC1 gene, which may result in the production of a truncated NimC1 protein. The NimC1 positivity was regained by recombining the mutation with a wild-type allele or by using nimC1 mutant lines under heterozygous conditions. By means of these procedures or using the recombined stock, NimC1 can be used as a marker for phagocytic cells in the majority of the possible genetic backgrounds.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Fagócitos/metabolismo , Receptores Imunológicos/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Expressão Gênica , Variação Genética , Receptores Imunológicos/genética , Receptores Imunológicos/fisiologia
7.
Mol Biol Evol ; 25(11): 2337-47, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18703524

RESUMO

The recently identified Nimrod superfamily is characterized by the presence of a special type of EGF repeat, the NIM repeat, located right after a typical CCXGY/W amino acid motif. On the basis of structural features, nimrod genes can be divided into three types. The proteins encoded by Draper-type genes have an EMI domain at the N-terminal part and only one copy of the NIM motif, followed by a variable number of EGF-like repeats. The products of Nimrod B-type and Nimrod C-type genes (including the eater gene) have different kinds of N-terminal domains, and lack EGF-like repeats but contain a variable number of NIM repeats. Draper and Nimrod C-type (but not Nimrod B-type) proteins carry a transmembrane domain. Several members of the superfamily were claimed to function as receptors in phagocytosis and/or binding of bacteria, which indicates an important role in the cellular immunity and the elimination of apoptotic cells. In this paper, the evolution of the Nimrod superfamily is studied with various methods on the level of genes and repeats. A hypothesis is presented in which the NIM repeat, along with the EMI domain, emerged by structural reorganizations at the end of an EGF-like repeat chain, suggesting a mechanism for the formation of novel types of repeats. The analyses revealed diverse evolutionary patterns in the sequences containing multiple NIM repeats. Although in the Nimrod B and Nimrod C proteins show characteristics of independent evolution, many internal NIM repeats in Eater sequences seem to have undergone concerted evolution. An analysis of the nimrod genes has been performed using phylogenetic and other methods and an evolutionary scenario of the origin and diversification of the Nimrod superfamily is proposed. Our study presents an intriguing example how the evolution of multigene families may contribute to the complexity of the innate immune response.


Assuntos
Evolução Molecular , Genes de Insetos , Família Multigênica , Sequências Repetitivas de Aminoácidos , Motivos de Aminoácidos , Animais , Anopheles/genética , Abelhas/genética , Drosophila/genética , Filogenia , Alinhamento de Sequência , Tribolium/genética
8.
Curr Biol ; 17(7): 649-54, 2007 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-17363253

RESUMO

The hemocytes, the blood cells of Drosophila, participate in the humoral and cellular immune defense reactions against microbes and parasites [1-8]. The plasmatocytes, one class of hemocytes, are phagocytically active and play an important role in immunity and development by removing microorganisms as well as apoptotic cells. On the surface of circulating and sessile plasmatocytes, we have now identified a protein, Nimrod C1 (NimC1), which is involved in the phagocytosis of bacteria. Suppression of NimC1 expression in plasmatocytes inhibited the phagocytosis of Staphylococcus aureus. Conversely, overexpression of NimC1 in S2 cells stimulated the phagocytosis of both S. aureus and Escherichia coli. NimC1 is a 90-100 kDa single-pass transmembrane protein with ten characteristic EGF-like repeats (NIM repeats). The nimC1 gene is part of a cluster of ten related nimrod genes at 34E on chromosome 2, and similar clusters of nimrod-like genes are conserved in other insects such as Anopheles and Apis. The Nimrod proteins are related to other putative phagocytosis receptors such as Eater and Draper from D. melanogaster and CED-1 from C. elegans. Together, they form a superfamily that also includes proteins that are encoded in the human genome.


Assuntos
Proteínas de Drosophila/imunologia , Drosophila/imunologia , Hemócitos/imunologia , Fagocitose , Receptores Imunológicos/imunologia , Motivos de Aminoácidos , Animais , Drosophila/citologia , Drosophila/microbiologia , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Escherichia coli/imunologia , Hemócitos/citologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Receptores Imunológicos/química , Receptores Imunológicos/genética , Staphylococcus aureus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA