Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 105, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013224

RESUMO

Zika virus (ZIKV) infection can be associated with neurological pathologies, such as microcephaly in newborns and Guillain-Barre syndrome in adults. Effective therapeutics are currently not available. As such, a comprehensive understanding of virus-host interactions may guide the development of medications for ZIKV. Here we report a human genome-wide overexpression screen to identify host factors that regulate ZIKV infection and find TMEM120A as a ZIKV restriction factor. TMEM120A overexpression significantly inhibits ZIKV replication, while TMEM120A knockdown increases ZIKV infection in cell lines. Moreover, Tmem120a knockout in mice facilitates ZIKV infection in primary mouse embryonic fibroblasts (MEF) cells. Mechanistically, the antiviral activity of TMEM120A is dependent on STING, as TMEM120A interacts with STING, promotes the translocation of STING from the endoplasmic reticulum (ER) to ER-Golgi intermediate compartment (ERGIC) and enhances the phosphorylation of downstream TBK1 and IRF3, resulting in the expression of multiple antiviral cytokines and interferon-stimulated genes. In summary, our gain-of-function screening identifies TMEM120A as a key activator of the antiviral signaling of STING.


Assuntos
Interações Hospedeiro-Patógeno/genética , Canais Iônicos/genética , Proteínas de Membrana/genética , Infecção por Zika virus/genética , Zika virus/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/virologia , Feminino , Regulação da Expressão Gênica , Complexo de Golgi/genética , Complexo de Golgi/imunologia , Complexo de Golgi/virologia , Hepatócitos/imunologia , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Interferon beta/genética , Interferon beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Canais Iônicos/deficiência , Canais Iônicos/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Transdução de Sinais , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Zika virus/crescimento & desenvolvimento , Zika virus/patogenicidade , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
2.
Infect Med (Beijing) ; 1(1): 7-16, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38074973

RESUMO

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 and has led to a global coronavirus disease 2019 (COVID-19) pandemic. Currently, incomplete understanding of how SARS-CoV-2 arrogates the host cell to establish its life cycle has led to slow progress in the development of effective drugs. Results: In this study, we found that SARS-CoV-2 hijacks the host protein EWSR1 (Ewing Sarcoma breakpoint region 1/EWS RNA binding protein 1) to promote the activity of its helicase NSP13 to facilitate viral propagation. NSP13 is highly conserved among coronaviruses and is crucial for virus replication, providing chemical energy to unwind viral RNA replication intermediates. Treatment with different SARS-CoV-2 NSP13 inhibitors in multiple cell lines infected with SARS-CoV-2 effectively suppressed SARS-CoV-2 infection. Using affinity-purification mass spectrometry, the RNA binding protein EWSR1 was then identified as a potent host factor that physically associated with NSP13. Furthermore, silencing EWSR1 dramatically reduced virus replication at both viral RNA and protein levels. Mechanistically, EWSR1 was found to bind to the NTPase domain of NSP13 and potentially enhance its dsRNA unwinding ability. Conclusions: Our results pinpoint EWSR1 as a novel host factor for NSP13 that could potentially be used for drug repurposing as a therapeutic target for COVID-19.

3.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34544865

RESUMO

Bats are responsible for the zoonotic transmission of several major viral diseases, including those leading to the 2003 SARS outbreak and likely the ongoing COVID-19 pandemic. While comparative genomics studies have revealed characteristic adaptations of the bat innate immune system, functional genomic studies are urgently needed to provide a foundation for the molecular dissection of the viral tolerance in bats. Here we report the establishment of genome-wide RNA interference (RNAi) and CRISPR libraries for the screening of the model megabat, Pteropus alecto. We used the complementary RNAi and CRISPR libraries to interrogate P. alecto cells for infection with two different viruses: mumps virus and influenza A virus, respectively. Independent screening results converged on the endocytosis pathway and the protein secretory pathway as required for both viral infections. Additionally, we revealed a general dependence of the C1-tetrahydrofolate synthase gene, MTHFD1, for viral replication in bat cells and human cells. The MTHFD1 inhibitor, carolacton, potently blocked replication of several RNA viruses, including SARS-CoV-2. We also discovered that bats have lower expression levels of MTHFD1 than humans. Our studies provide a resource for systematic inquiry into the genetic underpinnings of bat biology and a potential target for developing broad-spectrum antiviral therapy.


Assuntos
Aminoidrolases/genética , COVID-19/genética , Formiato-Tetra-Hidrofolato Ligase/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Complexos Multienzimáticos/genética , Pandemias , Aminoidrolases/antagonistas & inibidores , Animais , Antivirais/uso terapêutico , COVID-19/virologia , Linhagem Celular , Quirópteros/genética , Quirópteros/virologia , Formiato-Tetra-Hidrofolato Ligase/antagonistas & inibidores , Humanos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/antagonistas & inibidores , Antígenos de Histocompatibilidade Menor , Complexos Multienzimáticos/antagonistas & inibidores , Vírus de RNA/genética , SARS-CoV-2/patogenicidade , Replicação Viral/genética , Tratamento Farmacológico da COVID-19
4.
Virulence ; 12(1): 1209-1226, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34030593

RESUMO

New SARS-CoV-2 mutants have been continuously indentified with enhanced transmission ever since its outbreak in early 2020. As an RNA virus, SARS-CoV-2 has a high mutation rate due to the low fidelity of RNA polymerase. To study the single nucleotide polymorphisms (SNPs) dynamics of SARS-CoV-2, 158 SNPs with high confidence were identified by deep meta-transcriptomic sequencing, and the most common SNP type was C > T. Analyses of intra-host population diversity revealed that intra-host quasispecies' composition varies with time during the early onset of symptoms, which implicates viral evolution during infection. Network analysis of co-occurring SNPs revealed the most abundant non-synonymous SNP 22,638 in the S glycoprotein RBD region and 28,144 in the ORF8 region. Furthermore, SARS-CoV-2 variations differ in an individual's respiratory tissue (nose, throat, BALF, or sputum), suggesting independent compartmentalization of SARS-CoV-2 populations in patients. The positive selection analysis of the SARS-CoV-2 genome uncovered the positive selected amino acid G251V on ORF3a. Alternative allele frequency spectrum (AAFS) of all variants revealed that ORF8 could bear alternate alleles with high frequency. Overall, the results show the quasispecies' profile of SARS-CoV-2 in the respiratory tract in the first two months after the outbreak.


Assuntos
Filogenia , Polimorfismo de Nucleotídeo Único , Quase-Espécies , SARS-CoV-2/classificação , SARS-CoV-2/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , COVID-19/virologia , Biologia Computacional , Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/genética , Feminino , Frequência do Gene , Genoma Viral , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Adulto Jovem
5.
J Genet Genomics ; 47(1): 49-60, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-32081608

RESUMO

Noncoding RNAs (ncRNAs) play important roles in many biological processes and provide materials for evolutionary adaptations beyond protein-coding genes, such as in the arms race between the host and pathogen. However, currently, a comprehensive high-resolution analysis of primate genomes that includes the latest annotated ncRNAs is not available. Here, we developed a computational pipeline to estimate the selections that act on noncoding regions based on comparisons with a large number of reference sequences in introns adjacent to the interested regions. Our method yields result comparable with those of the established codon-based method and phyloP method for coding genes; thus, it provides a holistic framework for estimating the selection on the entire genome. We further showed that fast-evolving protein-coding genes and their corresponding 5' UTRs have a significantly lower frequency of the CpG dinucleotides than those evolving at an average pace, and these fast-evolving genes are enriched in the process of immunity and host defense. We also identified fast-evolving miRNAs with antiviral functions in cells. Our results provide a resource for high-resolution evolution analysis of the primate genomes.


Assuntos
Evolução Molecular , MicroRNAs/genética , RNA não Traduzido/genética , Animais , Antivirais/farmacologia , Genoma/genética , Glicina/análogos & derivados , Glicina/genética , Humanos , Primatas/genética
7.
Biomed Mater Eng ; 24(1): 475-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24211930

RESUMO

A size-based blood cell sorting model with a micro-fence structure is proposed in the frame of immersed boundary and lattice Boltzmann method (IB-LBM). The fluid dynamics is obtained by solving the discrete lattice Boltzmann equation, and the cells motion and deformation are handled by the immersed boundary method. A micro-fence consists of two parallel slope post rows which are adopted to separate red blood cells (RBCs) from white blood cells (WBCs), in which the cells to be separated are transported one after another by the flow into the passageway between the two post rows. Effected by the cross flow, RBCs are schemed to get through the pores of the nether post row since they are smaller and more deformable compared with WBCs. WBCs are required to move along the nether post row till they get out the micro-fence. Simulation results indicate that for a fix width of pores, the slope angle of the post row plays an important role in cell sorting. The cells mixture can not be separated properly in a small slope angle, while obvious blockages by WBCs will take place to disturb the continuous cell sorting in a big slope angle. As an optimal result, an adaptive slope angle is found to sort RBCs form WBCs correctly and continuously.


Assuntos
Separação Celular/instrumentação , Separação Celular/métodos , Eritrócitos/citologia , Leucócitos/citologia , Algoritmos , Movimento Celular , Simulação por Computador , Humanos , Hidrodinâmica , Técnicas Analíticas Microfluídicas , Microfluídica/métodos , Modelos Teóricos , Software , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA