Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234800

RESUMO

Coronopus didymus (Brassicaceae) commonly known as lesser swine cress has been reported to be used for its pharmacological activities. This study aimed to evaluate the medicinal potential of C. didymus extracts against cancer, diabetes, infectious bacteria and oxidative stress and the identification of bioactive compounds present in these extracts. The effects of using different solvents for the extraction of C. didymus on the contents of major polyphenols and biological activities were investigated. Plant sample was shade dried, ground to a fine powder, and then soaked in pure acetone, ethanol and methanol. The highest contents of major polyphenols were found in methanol-based extract, i.e., chlorogenic acid, HB acid, kaempferol, ferulic acid, quercetin and benzoic acid with 305.02, 12.42, 11.5, 23.33, 975.7 and 428 mg/g of dry weight, respectively, followed by ethanol- and acetone-based extracts. The methanol-based extract also resulted in the highest antioxidant activities (56.76%), whereas the highest antiproliferative (76.36) and alpha glucosidase inhabitation (96.65) were demonstrated in ethanol-based extracts. No antibacterial property of C. didymus was observed against all the tested strains of bacteria. Further studies should be focused on the identification of specific bioactive compounds responsible for pharmacological activities.


Assuntos
Brassicaceae , Lepidium , Acetona , Animais , Antioxidantes/farmacologia , Ácido Benzoico , Ácido Clorogênico , Etanol , Hipoglicemiantes/farmacologia , Quempferóis , Metanol , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Pós , Quercetina , Solventes , Suínos , alfa-Glucosidases
2.
Environ Pollut ; 304: 119249, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390420

RESUMO

Both cancer and diabetes mellitus are serious health issues, accounting more than 11 million deaths worldwide annually. Targeted use of plant-mediated nanoparticles (NPs) in treatment of ailments has outstanding results due to their salient properties. The current study was designed to investigate the safe production of silver nanoparticles (AgNPs) from Acacia nilotica. Different concentrations of AgNO3 were tested to optimize the protocol for the synthesis of AgNPs from the bark extract. It was demonstrated that 0.1 M and 3 mM were found to be the optimum concentrations for the synthesis of AgNPs. Standard characterization techniques such as UV-vis spectrophotometry, SEM, SEM-EDX micrograph, spot analysis, elemental mapping and XRD were used for the conformation of biosynthesis of AgNPs. Absorption spectrum of plant-mediated AgNPs under UV-vis spectrophotometer showed a strong peak at 380 nm and 420 nm for AgNPs synthesized at 0.1 M and 3 mM concentration of salt. The SEM results showed that AgNPs were present in variable shapes within average particle size ranging from (20-50 nm). Anticancer, antidiabetic and antioxidant potential of green AgNPs was investigated and they showed promising results as compared to the positive and negative controls. Hence, AgNPs were found potent therapeutic agent against the human liver cancer cell lines (HepG2), strong inhibitor for α-glucosidase enzyme activity and scavenging agent against free radicals that cause oxidative stress. Further studies are however needed to confirm the molecular mechanism and biochemical reactions responsible for the anticancer and antidiabetic activities of the particles.


Assuntos
Acacia , Nanopartículas Metálicas , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA