Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
JCI Insight ; 8(18)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607000

RESUMO

Uterine leiomyomas cause heavy menstrual bleeding, anemia, and pregnancy loss in millions of women worldwide. Driver mutations in the transcriptional mediator complex subunit 12 (MED12) gene in uterine myometrial cells initiate 70% of leiomyomas that grow in a progesterone-dependent manner. We showed a distinct chromatin occupancy landscape of MED12 in mutant MED12 (mut-MED12) versus WT-MED12 leiomyomas. Integration of cistromic and transcriptomics data identified tryptophan 2,3-dioxygenase (TDO2) as the top mut-MED12 target gene that was significantly upregulated in mut-MED12 leiomyomas when compared with adjacent myometrium and WT-MED12 leiomyomas. TDO2 catalyzes the conversion of tryptophan to kynurenine, an aryl hydrocarbon receptor (AHR) ligand that we confirmed to be significantly elevated in mut-MED12 leiomyomas. Treatment of primary mut-MED12 leiomyoma cells with tryptophan or kynurenine stimulated AHR nuclear translocation, increased proliferation, inhibited apoptosis, and induced AHR-target gene expression, whereas blocking the TDO2/kynurenine/AHR pathway by siRNA or pharmacological treatment abolished these effects. Progesterone receptors regulated the expression of AHR and its target genes. In vivo, TDO2 expression positively correlated with the expression of genes crucial for leiomyoma growth. In summary, activation of the TDO2/kynurenine/AHR pathway selectively in mut-MED12 leiomyomas promoted tumor growth and may inform the future development of targeted treatments and precision medicine.


Assuntos
Leiomioma , Neoplasias Uterinas , Feminino , Humanos , Triptofano , Cinurenina/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Leiomioma/genética , Leiomioma/metabolismo , Leiomioma/patologia , Mutação , Complexo Mediador/genética , Complexo Mediador/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(47): e2208886119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375056

RESUMO

Uterine leiomyoma is the most common tumor in women and causes severe morbidity in 15 to 30% of reproductive-age women. Epidemiological studies consistently indicate a correlation between leiomyoma development and exposure to endocrine-disrupting chemical phthalates, especially di-(2-ethylhexyl) phthalate (DEHP); however, the underlying mechanisms are unknown. Here, among the most commonly encountered phthalate metabolites, we found the strongest association between the urine levels of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), the principal DEHP metabolite, and the risk of uterine leiomyoma diagnosis (n = 712 patients). The treatment of primary leiomyoma and smooth muscle cells (n = 29) with various mixtures of phthalate metabolites, at concentrations equivalent to those detected in urine samples, significantly increased cell viability and decreased apoptosis. MEHHP had the strongest effects on both cell viability and apoptosis. MEHHP increased cellular tryptophan and kynurenine levels strikingly and induced the expression of the tryptophan transporters SLC7A5 and SLC7A8, as well as, tryptophan 2,3-dioxygenase (TDO2), the key enzyme catalyzing the conversion of tryptophan to kynurenine that is the endogenous ligand of aryl hydrocarbon receptor (AHR). MEHHP stimulated nuclear localization of AHR and up-regulated the expression of CYP1A1 and CYP1B1, two prototype targets of AHR. siRNA knockdown or pharmacological inhibition of SLC7A5/SLC7A8, TDO2, or AHR abolished MEHHP-mediated effects on leiomyoma cell survival. These findings indicate that MEHHP promotes leiomyoma cell survival by activating the tryptophan-kynurenine-AHR pathway. This study pinpoints MEHHP exposure as a high-risk factor for leiomyoma growth, uncovers a mechanism by which exposure to environmental phthalate impacts leiomyoma pathogenesis, and may lead to the development of novel druggable targets.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Leiomioma , Ácidos Ftálicos , Humanos , Feminino , Dietilexilftalato/toxicidade , Dietilexilftalato/urina , Cinurenina , Triptofano , Sobrevivência Celular , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes , Exposição Ambiental/efeitos adversos , Leiomioma/induzido quimicamente , Leiomioma/urina
3.
Curr Microbiol ; 79(3): 78, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35091832

RESUMO

Biofilm plays an important role in the community and hospital-acquired infections. Especially E. coli biofilm that contributes towards the significant part of medical devices associated with microbial infections. OmpR/EnvZ, a two-component system, is one of the regulatory mechanisms involved in transcription regulation in response to environmental osmolarity changes. The main objective of this study was to elucidate the role of the OmpR/EnvZ two-component system in regulating the biofilm through curli and fimbriae (FimH gene), a contrary approach towards biofilm inhibition. In this study, the CRISPRi technique was used to suppress the expression of the OmpR gene. The RT-PCR assay was performed to quantify mRNA gene expression of curli and biofilm producing genes, and the data were further confirmed by different microscopic, spectroscopic and biofilm quantification assay (Crystal Violet). It is the first time we have shown downregulation of the OmpR gene in biofilm causing clinical isolates of E. coli, which further suppressed the FimH gene, leading to biofilm reduction. The crystal violet assay and microscopic studies also confirmed the biofilm reduction. We conclude that the OmpR gene of the OmpR/EnvZ two-component system could be one of the targets for biofilm mediated infection intervention. Our findings open new vistas to explore the pathways and targets to control biofilm mediated infections.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Bactérias/genética , Biofilmes , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli/genética , Proteínas de Escherichia coli/genética
4.
J Biol Res (Thessalon) ; 27: 10, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32566535

RESUMO

BACKGROUND: Biofilm formation is a complex phenomenon of bacterial cells, involved in several human infections. Its formation is regulated and controlled by several protein factors. The BolA-like proteins (bolA gene) are conserved in both prokaryotes and eukaryotes. The BolA protein is a transcription factor involved in bacterial cell motility and biofilm formation. This study was initiated to elucidate the role of the bolA gene in the curli biogenesis and amyloid production as well as to observe changes in the expression of fimH, a fimbriae gene. METHODS: Knockdown mutants of Escherichia coli MG1655 bolA gene (bolA-KD) were generated using CRISPR interference. The results obtained, were validated through gene expression using RT-PCR, microscopic analysis and different biofilm and amyloid assays. RESULTS: The bolA knockdown mutants showed a decrement in curli amyloid fibers, in fimbriae production and biofilm formation. We have also observed a reduction in EPS formation, eDNA production and extracellular protein content. Gene expression data showed that bolA downregulation caused the suppression of csgA and csgD of curli that led to the reduction in curli fiber and the amyloid formation and also the suppression of fimH, leading to the loss of fimbriae. CONCLUSIONS: Curli fibers and fimbriae are found to be involved in biofilm formation leading to the pathogenicity of the bacterial cell. BolA is a conserved protein and is found to play a significant role in curli and fimbriae formation in E. coli. This study further proved that CRISPRi mediated suppression of the bolA gene leads to inhibition of biofilm formation through curli and fimbriae inhibition. Hence, it may be proposed as a possible target for intervention of biofilm mediated infections.

5.
Front Immunol ; 8: 1552, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29181009

RESUMO

Urinary tract infection (UTI) is one the common infections caused by the recalcitrant nature of biofilms, developed after the pathogen has adhered to the inner lining of the urinary tract. Although significant research has been made in recent years to control these types of infection, but as of yet, no approach has sufficiently been able to reduce the prevalence of UTIs. The main objective of this study was to prevent UTIs through targeting the fimH gene, which is the major virulent factor responsible for biofilm formation. The novelty of this work lies in the use of CRISPRi, a gene specific editing tool to control such types of infections. Accordingly, the system was designed to target fimH gene, responsible for bacterial adherence and this approach was successfully validated by performing microscopic, biofilm and adherence assays.

6.
Artigo em Inglês | MEDLINE | ID: mdl-28603699

RESUMO

Biofilm is a sessile bacterial accretion embedded in self-producing matrix. It is the root cause of about 80% microbial infections in human. Among them, E. coli biofilms are most prevalent in medical devices associated nosocomial infections. The objective of this study was to inhibit biofilm formation by targeting gene involved in quorum sensing, one of the main mechanisms of biofilm formation. Hence we have introduced the CRISPRi, first time to target luxS gene. luxS is a synthase, involved in the synthesis of Autoinducer-2(AI-2), which in turn guides the initial stage of biofilm formation. To implement CRISPRi system for luxS gene suppression, we have synthesized complementary sgRNA to target gene sequence and co-expressed with dCas9, a mutated form of an endonuclease. Suppression of luxS expression was confirmed through qRT-PCR. The effect of luxS gene on biofilm inhibition was studied through crystal violet assay, XTT reduction assay and scanning electron microscopy. We conclude that CRISPRi system could be a potential strategy to inhibit bacterial biofilm through mechanism base approach.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Escherichia coli/metabolismo , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Homosserina/análogos & derivados , Homosserina/metabolismo , Humanos , Lactonas/metabolismo , Viabilidade Microbiana , Microscopia Eletrônica de Varredura , Percepção de Quorum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA