Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32266247

RESUMO

BACKGROUND AND AIMS: Platelet rich plasma (PRP) obtained from blood anticoagulated with acid-citrate-dextrose (ACD) or sodium-citrate (SC) is used for regenerative medicine as source of platelet-derived growth factors. Allergic reactions against citrate were reported in patients after local injection of PRP allowing us to hypothesize that anticoagulants exert a harmful and local effect that interferes with the regenerative proprieties of platelets. Herein we test this hypothesis by analyzing the effect of ACD and SC on angiogenic and regenerative responses mediated by platelets. METHODS: PRP was obtained from SC- or ACD-anticoagulated blood; platelets were lysed to release growth factors; and PRP releasates (PRPr) were used to induce in vitro endothelial proliferation and 2D-migration, and regeneration of mouse skin wounds. RESULTS: We first compared proliferation and migration of endothelial cells mediated by anticoagulated-PRPr supplemented or not with CaCl2. Alteration of endothelial adhesion and impediment of proliferation and migration was observed without CaCl2. Although endothelial morphology was normalized in SC- and ACD-PRPr after calcium restitution, angiogenic responses were only markedly induced by SC-PRPr. In vivo studies revealed a delay in mouse skin regeneration after treatment with anticoagulated-PRPr without CaCl2. Healing was only induced after calcium restitution in SC- but ACD-PRPr. Moreover, the development of inflammatory intradermal papules was evidenced after injection of ACD-PRPr. Supplementation of SC-PRPr with the equivalent concentration of dextrose (D-Glucose, 18 mM) present in ACD-PRPr resulted in reduction of endothelial proliferation and migration, delay of mouse skin regeneration and development of intradermal papules. Finally, collecting blood with half amount of SC significantly improved all the angiogenic and regenerative responses mediated by PRPr. In contrast, the delay of skin regeneration and the development of inflammatory papules remained stable after dilution of ACD. CONCLUSION: Our findings indicate that (1) calcium restitution is required to impair the cellular and tissue alterations induced by citrated-anticoagulants contained in PRP; (2) ACD-derived dextrose confers anti-angiogenic, anti-regenerative and pro-inflammatory proprieties to PRP; and (3) half concentration of SC improves the angiogenesis and regeneration mediated by PRP.

2.
Arterioscler Thromb Vasc Biol ; 39(10): e219-e232, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31434496

RESUMO

OBJECTIVE: Ceramide 1-phosphate (C1P) is a bioactive sphingolipid highly augmented in damaged tissues. Because of its abilities to stimulate migration of murine bone marrow-derived progenitor cells, it has been suggested that C1P might be involved in tissue regeneration. In the present study, we aimed to investigate whether C1P regulates survival and angiogenic activity of human progenitor cells with great therapeutic potential in regenerative medicine such as endothelial colony-orming cells (ECFCs). Approach and Results: C1P protected ECFC from TNFα (tumor necrosis factor-α)-induced and monosodium urate crystal-induced death and acted as a potent chemoattractant factor through the activation of ERK1/2 (extracellular signal-regulated kinases 1 and 2) and AKT pathways. C1P treatment enhanced ECFC adhesion to collagen type I, an effect that was prevented by ß1 integrin blockade, and to mature endothelial cells, which was mediated by the E-selectin/CD44 axis. ECFC proliferation and cord-like structure formation were also increased by C1P, as well as vascularization of gel plug implants loaded or not with ECFC. In a murine model of hindlimb ischemia, local administration of C1P alone promoted blood perfusion and reduced necrosis in the ischemic muscle. Additionally, the beneficial effects of ECFC infusion after ischemia were amplified by C1P pretreatment, resulting in a further and significant enhancement of leg reperfusion and muscle repair. CONCLUSIONS: Our findings suggest that C1P may have therapeutic relevance in ischemic disorders, improving tissue repair by itself, or priming ECFC angiogenic responses such as chemotaxis, adhesion, proliferation, and tubule formation, which result in a better outcome of ECFC-based therapy.


Assuntos
Apoptose/efeitos dos fármacos , Ceramidas/farmacologia , Células Progenitoras Endoteliais/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Animais , Diferenciação Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Células Progenitoras Endoteliais/efeitos dos fármacos , Humanos , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Camundongos , Morfogênese/efeitos dos fármacos , Sensibilidade e Especificidade
3.
Stem Cell Res Ther ; 9(1): 120, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720269

RESUMO

BACKGROUND: We have previously demonstrated that acidic preconditioning of human endothelial colony-forming cells (ECFC) increased proliferation, migration, and tubulogenesis in vitro, and increased their regenerative potential in a murine model of hind limb ischemia without baseline disease. We now analyze whether this strategy is also effective under adverse conditions for vasculogenesis, such as the presence of ischemia-related toxic molecules or diabetes, one of the main target diseases for cell therapy due to their well-known healing impairments. METHODS: Cord blood-derived CD34+ cells were seeded in endothelial growth culture medium (EGM2) and ECFC colonies were obtained after 14-21 days. ECFC were exposed at pH 6.6 (preconditioned) or pH 7.4 (nonpreconditioned) for 6 h, and then pH was restored at 7.4. A model of type 2 diabetes induced by a high-fat and high-sucrose diet was developed in nude mice and hind limb ischemia was induced in these animals by femoral artery ligation. A P value < 0.05 was considered statistically significant (by one-way analysis of variance). RESULTS: We found that acidic preconditioning increased ECFC adhesion and the release of pro-angiogenic molecules, and protected ECFC from the cytotoxic effects of monosodium urate crystals, histones, and tumor necrosis factor (TNF)α, which induced necrosis, pyroptosis, and apoptosis, respectively. Noncytotoxic concentrations of high glucose, TNFα, or their combination reduced ECFC proliferation, stromal cell-derived factor (SDF)1-driven migration, and tubule formation on a basement membrane matrix, whereas almost no inhibition was observed in preconditioned ECFC. In type 2 diabetic mice, intravenous administration of preconditioned ECFC significantly induced blood flow recovery at the ischemic limb as measured by Doppler, compared with the phosphate-buffered saline (PBS) and nonpreconditioned ECFC groups. Moreover, the histologic analysis of gastrocnemius muscles showed an increased vascular density and reduced signs of inflammation in the animals receiving preconditioned ECFC. CONCLUSIONS: Acidic preconditioning improved ECFC survival and angiogenic activity in the presence of proinflammatory and damage signals present in the ischemic milieu, even under high glucose conditions, and increased their therapeutic potential for postischemia tissue regeneration in a murine model of type 2 diabetes. Collectively, our data suggest that acidic preconditioning of ECFC is a simple and inexpensive strategy to improve the effectiveness of cell transplantation in diabetes, where tissue repair is highly compromised.


Assuntos
Ácidos/química , Diabetes Mellitus Experimental/tratamento farmacológico , Células Progenitoras Endoteliais/metabolismo , Glucose/metabolismo , Neovascularização Fisiológica/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA