Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906826

RESUMO

The existence of liquid carbon as an intermediate phase preceding the formation of novel carbon materials has been a point of contention for several decades. Experimental observation of such a liquid state requires nonthermal melting of solid carbon materials at various laser fluences and pulse properties. Reflectivity experiments performed in the mid-1980s reached opposing conclusions regarding the metallic or insulating properties of the purported liquid state. Time-resolved X-ray absorption studies showed shortening of C-C bonds and increasing diffraction densities, thought to evidence a liquid or glassy carbon state, respectively. Nevertheless, none of these experiments provided information on the electronic structure of the proposed liquid state. Herein, we report the results of time-resolved resonant inelastic X-ray scattering (RIXS) and time-resolved X-ray emission spectroscopy (XES) studies on amorphous carbon (a-C) and ultrananocrystalline diamond (UNCD) as a function of delay time between the irradiating pulse and X-ray probe. For both a-C and UNCD, we attribute decreases in RIXS or XES signals to transition blocking, relaxation, and finally, ablation. Increased signal at 20 ps following the irradiation of the UNCD is attributed to the probable formation of nanoscale structures in the ablation plume. Differences in the amount of signal observed between a-C and UNCD are explained by the difference in sample thickness and, specifically, incomplete melting of the UNCD film. Comparisons to spectral simulations based on MD trajectories at extreme conditions indicate that the carbon state in our experiments is crystalline. Normal mode analysis confirmed that symmetrical bending or stretching of the C-C bonds in the diamond lattice results in XES spectra with small intensity differences. Overall, we observed no evidence of melting to a liquid state, as determined by the lack of changes in the spectral properties for up to 100 ps delays following the melting pulses.

2.
J Am Chem Soc ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900942

RESUMO

The dynamics of photoinduced electron transfer were measured at dye-sensitized photoanodes in aqueous (acetate buffer), nonaqueous (acetonitrile), and mixed solvent electrolytes by nanosecond transient absorption spectroscopy (TAS) and ultrafast optical-pump terahertz-probe spectroscopy (OPTP). Higher injection efficiencies were found in mixed solvent electrolytes for dye-sensitized SnO2/TiO2 core/shell electrodes, whereas the injection efficiency of dye-sensitized TiO2 electrodes decreased with the increasing acetonitrile concentration. The trend in injection efficiency for the TiO2 electrodes was consistent with the solvent-dependent trend in the semiconductor flat band potential. Photoinduced electron injection in core/shell electrodes has been understood as a two-step process involving ultrafast electron trapping in the TiO2 shell followed by slower electron transfer to the SnO2 core. The driving force for shell-to-core electron transfer increases as the flat band potential of TiO2 shifts negatively with increasing concentrations of acetonitrile. In acetonitrile-rich electrolytes, electron injection is suppressed due to the very negative flat band potential of the TiO2 shell. Interestingly, a net negative photoconductivity in the SnO2 core is observed in mixed solvent electrolytes by OPTP. We hypothesize that an electric field is formed across the TiO2 shell from the oxidized dye molecules after injection. Conduction band electrons in SnO2 are trapped at the core/shell interface by the electric field, resulting in a negative photoconductivity transient. The overall electron injection efficiency of the dye-sensitized SnO2/TiO2 core/shell photoanodes is optimized in mixed solvents. The ultrafast transient conductivity data illustrate the crucial role of the electrolyte in regulating the driving forces for electron injection and charge separation at dye-sensitized semiconductor interfaces.

3.
J Am Chem Soc ; 146(8): 5580-5596, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38347659

RESUMO

Under mild blue-light irradiation, α-acylated saturated heterocycles undergo a photomediated one-atom ring contraction that extrudes a heteroatom from the cyclic core. However, for nitrogenous heterocycles, this powerful skeletal edit has been limited to substrates bearing electron-withdrawing substituents on nitrogen. Moreover, the mechanism and wavelength-dependent efficiency of this transformation have remained unclear. In this work, we increased the electron richness of nitrogen in saturated azacycles to improve light absorption and strengthen critical intramolecular hydrogen bonding while enabling the direct installation of the photoreactive handle. As a result, a broadly expanded substrate scope, including underexplored electron-rich substrates and previously unsuccessful heterocycles, has now been achieved. The significantly improved yields and diastereoselectivities have facilitated reaction rate, kinetic isotope effect (KIE), and quenching studies, in addition to the determination of quantum yields. Guided by these studies, we propose a revised ET/PT mechanism for the ring contraction, which is additionally corroborated by computational characterization of the lowest-energy excited states of α-acylated substrates through time-dependent DFT. The efficiency of the ring contraction at wavelengths longer than those strongly absorbed by the substrates was investigated through wavelength-dependent rate measurements, which revealed a red shift of the photochemical action plot relative to substrate absorbance. The elucidated mechanistic and photophysical details effectively rationalize empirical observations, including additive effects, that were previously poorly understood. Our findings not only demonstrate enhanced synthetic utility of the photomediated ring contraction and shed light on mechanistic details but may also offer valuable guidance for understanding wavelength-dependent reactivity for related photochemical systems.

4.
Nat Commun ; 13(1): 963, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181649

RESUMO

In low-dimensional systems with strong electronic correlations, the application of an ultrashort laser pulse often yields novel phases that are otherwise inaccessible. The central challenge in understanding such phenomena is to determine how dimensionality and many-body correlations together govern the pathway of a non-adiabatic transition. To this end, we examine a layered compound, 1T-TiSe2, whose three-dimensional charge-density-wave (3D CDW) state also features exciton condensation due to strong electron-hole interactions. We find that photoexcitation suppresses the equilibrium 3D CDW while creating a nonequilibrium 2D CDW. Remarkably, the dimension reduction does not occur unless bound electron-hole pairs are broken. This relation suggests that excitonic correlations maintain the out-of-plane CDW coherence, settling a long-standing debate over their role in the CDW transition. Our findings demonstrate how optical manipulation of electronic interaction enables one to control the dimensionality of a broken-symmetry order, paving the way for realizing other emergent states in strongly correlated systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA