RESUMO
Epithelial cells form a globular organ-like multi-cellular structure called cyst when cultured in extracellular matrix. The cyst generates extension followed by cell chains and tubules in response to hepatocyte growth factor (HGF). The Rho family small GTPases play essential roles for tubulogenesis. FilGAP, a Rac specific Rho GTPase-activating protein, is highly expressed in kidney. In this study, we examined the role of FilGAP in the tubulogenesis of Madin-Darby Canine Kidney (MDCK) epithelial cells. HGF induces basolateral extensions from cysts. Depletion of FilGAP by siRNA increased the number of extensions in response to HGF, whereas forced expression of FilGAP decreased the number of the extensions. FilGAP is phosphorylated and activated downstream of Rho-ROCK-signaling. Overexpression of phospho-mimic FilGAP (ST/D) mutant blocked formation of the membrane extensions induced by HGF in the presence of ROCK inhibitor, Y-27632. On the other hand, treatment of the tubules with Y27632 induced scattering of the cells, but FilGAP (ST/D) blocked cell scattering and promoted lumen formation. Taken together, our study suggests that FilGAP may suppress formation of extensions whereas stabilize tubule formation downstream of Rho-ROCK-signaling.
Assuntos
Células Epiteliais/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Organogênese , Animais , Cães , Células Epiteliais/efeitos dos fármacos , Fator de Crescimento de Hepatócito/farmacologia , Células Madin Darby de Rim Canino , Organogênese/efeitos dos fármacos , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismoRESUMO
Rho family small GTPases are essential for the formation of adherens junctions in epithelial cells. Here, we found that FilGAP (also known as ARHGAP24), a Rac-specific Rho GTPase-activating protein, promoted the formation of adherens junctions in Madin-Darby canine kidney (MDCK) cells. Knockdown of FilGAP by siRNA stimulated the disassembly and migration of MDCK cells induced by hepatocyte growth factor (HGF). By contrast, forced expression of FilGAP induced accumulation of E-cadherin at adherens junctions. Endogenous FilGAP colocalized with E-cadherin at adherens junctions, and depletion of FilGAP reduced the amount of E-cadherin expressed at the surface. The Rac GAP domain of FilGAP was necessary for the suppression of cell scattering induced by HGF. In agreement with this, siRNA-mediated knockdown of both Rac1 and FilGAP suppressed cell scattering induced by HGF. Forced expression of Rho kinase (ROCK, of which there are two isoforms ROCK1 and ROCK2) induced the accumulation of E-cadherin at the adherens junction, and depletion of FilGAP prevented the accumulation of E-cadherin. Moreover, wild-type FilGAP but not a non-phosphorylatable FilGAP mutant rescued the accumulation of E-cadherin at adherens junctions. These results suggest that FilGAP might regulate cell-cell adhesion through inactivation of Rac downstream of Rho-ROCK-signaling in MDCK cells.