Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(2): 444-450.e5, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38176416

RESUMO

The appreciation of music is a universal trait of humankind.1,2,3 Evidence supporting this notion includes the ubiquity of music across cultures4,5,6,7 and the natural predisposition toward music that humans display early in development.8,9,10 Are we musical animals because of species-specific predispositions? This question cannot be answered by relying on cross-cultural or developmental studies alone, as these cannot rule out enculturation.11 Instead, it calls for cross-species experiments testing whether homologous neural mechanisms underlying music perception are present in non-human primates. We present music to two rhesus monkeys, reared without musical exposure, while recording electroencephalography (EEG) and pupillometry. Monkeys exhibit higher engagement and neural encoding of expectations based on the previously seeded musical context when passively listening to real music as opposed to shuffled controls. We then compare human and monkey neural responses to the same stimuli and find a species-dependent contribution of two fundamental musical features-pitch and timing12-in generating expectations: while timing- and pitch-based expectations13 are similarly weighted in humans, monkeys rely on timing rather than pitch. Together, these results shed light on the phylogeny of music perception. They highlight monkeys' capacity for processing temporal structures beyond plain acoustic processing, and they identify a species-dependent contribution of time- and pitch-related features to the neural encoding of musical expectations.


Assuntos
Música , Animais , Percepção da Altura Sonora/fisiologia , Motivação , Eletroencefalografia/métodos , Primatas , Estimulação Acústica , Percepção Auditiva/fisiologia
2.
Neuroimage ; 274: 120143, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121375

RESUMO

In noisy environments, our ability to understand speech benefits greatly from seeing the speaker's face. This is attributed to the brain's ability to integrate audio and visual information, a process known as multisensory integration. In addition, selective attention plays an enormous role in what we understand, the so-called cocktail-party phenomenon. But how attention and multisensory integration interact remains incompletely understood, particularly in the case of natural, continuous speech. Here, we addressed this issue by analyzing EEG data recorded from participants who undertook a multisensory cocktail-party task using natural speech. To assess multisensory integration, we modeled the EEG responses to the speech in two ways. The first assumed that audiovisual speech processing is simply a linear combination of audio speech processing and visual speech processing (i.e., an A + V model), while the second allows for the possibility of audiovisual interactions (i.e., an AV model). Applying these models to the data revealed that EEG responses to attended audiovisual speech were better explained by an AV model, providing evidence for multisensory integration. In contrast, unattended audiovisual speech responses were best captured using an A + V model, suggesting that multisensory integration is suppressed for unattended speech. Follow up analyses revealed some limited evidence for early multisensory integration of unattended AV speech, with no integration occurring at later levels of processing. We take these findings as evidence that the integration of natural audio and visual speech occurs at multiple levels of processing in the brain, each of which can be differentially affected by attention.


Assuntos
Percepção da Fala , Humanos , Percepção da Fala/fisiologia , Fala , Atenção/fisiologia , Percepção Visual/fisiologia , Encéfalo/fisiologia , Estimulação Acústica , Percepção Auditiva
3.
Eur J Neurosci ; 56(8): 5201-5214, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35993240

RESUMO

Speech comprehension relies on the ability to understand words within a coherent context. Recent studies have attempted to obtain electrophysiological indices of this process by modelling how brain activity is affected by a word's semantic dissimilarity to preceding words. Although the resulting indices appear robust and are strongly modulated by attention, it remains possible that, rather than capturing the contextual understanding of words, they may actually reflect word-to-word changes in semantic content without the need for a narrative-level understanding on the part of the listener. To test this, we recorded electroencephalography from subjects who listened to speech presented in either its original, narrative form, or after scrambling the word order by varying amounts. This manipulation affected the ability of subjects to comprehend the speech narrative but not the ability to recognise individual words. Neural indices of semantic understanding and low-level acoustic processing were derived for each scrambling condition using the temporal response function. Signatures of semantic processing were observed when speech was unscrambled or minimally scrambled and subjects understood the speech. The same markers were absent for higher scrambling levels as speech comprehension dropped. In contrast, word recognition remained high and neural measures related to envelope tracking did not vary significantly across scrambling conditions. This supports the previous claim that electrophysiological indices based on the semantic dissimilarity of words to their context reflect a listener's understanding of those words relative to that context. It also highlights the relative insensitivity of neural measures of low-level speech processing to speech comprehension.


Assuntos
Semântica , Percepção da Fala , Percepção Auditiva/fisiologia , Compreensão/fisiologia , Eletroencefalografia , Humanos , Fala/fisiologia , Percepção da Fala/fisiologia
4.
Front Neurosci ; 15: 705621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880719

RESUMO

Cognitive neuroscience, in particular research on speech and language, has seen an increase in the use of linear modeling techniques for studying the processing of natural, environmental stimuli. The availability of such computational tools has prompted similar investigations in many clinical domains, facilitating the study of cognitive and sensory deficits under more naturalistic conditions. However, studying clinical (and often highly heterogeneous) cohorts introduces an added layer of complexity to such modeling procedures, potentially leading to instability of such techniques and, as a result, inconsistent findings. Here, we outline some key methodological considerations for applied research, referring to a hypothetical clinical experiment involving speech processing and worked examples of simulated electrophysiological (EEG) data. In particular, we focus on experimental design, data preprocessing, stimulus feature extraction, model design, model training and evaluation, and interpretation of model weights. Throughout the paper, we demonstrate the implementation of each step in MATLAB using the mTRF-Toolbox and discuss how to address issues that could arise in applied research. In doing so, we hope to provide better intuition on these more technical points and provide a resource for applied and clinical researchers investigating sensory and cognitive processing using ecologically rich stimuli.

5.
PLoS Comput Biol ; 17(9): e1009358, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34534211

RESUMO

The human brain tracks amplitude fluctuations of both speech and music, which reflects acoustic processing in addition to the encoding of higher-order features and one's cognitive state. Comparing neural tracking of speech and music envelopes can elucidate stimulus-general mechanisms, but direct comparisons are confounded by differences in their envelope spectra. Here, we use a novel method of frequency-constrained reconstruction of stimulus envelopes using EEG recorded during passive listening. We expected to see music reconstruction match speech in a narrow range of frequencies, but instead we found that speech was reconstructed better than music for all frequencies we examined. Additionally, models trained on all stimulus types performed as well or better than the stimulus-specific models at higher modulation frequencies, suggesting a common neural mechanism for tracking speech and music. However, speech envelope tracking at low frequencies, below 1 Hz, was associated with increased weighting over parietal channels, which was not present for the other stimuli. Our results highlight the importance of low-frequency speech tracking and suggest an origin from speech-specific processing in the brain.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Música , Percepção da Fala/fisiologia , Fala/fisiologia , Estimulação Acústica/métodos , Adolescente , Adulto , Biologia Computacional , Simulação por Computador , Eletroencefalografia/estatística & dados numéricos , Feminino , Humanos , Modelos Lineares , Masculino , Modelos Neurológicos , Análise de Componente Principal , Acústica da Fala , Adulto Jovem
6.
Neuroimage ; 210: 116558, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31962174

RESUMO

Humans can easily distinguish many sounds in the environment, but speech and music are uniquely important. Previous studies, mostly using fMRI, have identified separate regions of the brain that respond selectively for speech and music. Yet there is little evidence that brain responses are larger and more temporally precise for human-specific sounds like speech and music compared to other types of sounds, as has been found for responses to species-specific sounds in other animals. We recorded EEG as healthy, adult subjects listened to various types of two-second-long natural sounds. By classifying each sound based on the EEG response, we found that speech, music, and impact sounds were classified better than other natural sounds. But unlike impact sounds, the classification accuracy for speech and music dropped for synthesized sounds that have identical frequency and modulation statistics based on a subcortical model, indicating a selectivity for higher-order features in these sounds. Lastly, the patterns in average power and phase consistency of the two-second EEG responses to each sound replicated the patterns of speech and music selectivity observed with classification accuracy. Together with the classification results, this suggests that the brain produces temporally individualized responses to speech and music sounds that are stronger than the responses to other natural sounds. In addition to highlighting the importance of speech and music for the human brain, the techniques used here could be a cost-effective, temporally precise, and efficient way to study the human brain's selectivity for speech and music in other populations.


Assuntos
Percepção Auditiva/fisiologia , Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Neuroimagem Funcional/métodos , Música , Adulto , Feminino , Humanos , Masculino , Percepção da Fala/fisiologia , Adulto Jovem
7.
J Neurophysiol ; 122(4): 1821-1842, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461376

RESUMO

While motion is important for parsing a complex auditory scene into perceptual objects, how it is encoded in the auditory system is unclear. Perceptual studies suggest that the ability to identify the direction of motion is limited by the duration of the moving sound, yet we can detect changes in interaural differences at even shorter durations. To understand the source of these distinct temporal limits, we recorded from single units in the inferior colliculus (IC) of unanesthetized rabbits in response to noise stimuli containing a brief segment with linearly time-varying interaural time difference ("ITD sweep") temporally embedded in interaurally uncorrelated noise. We also tested the ability of human listeners to either detect the ITD sweeps or identify the motion direction. Using a point-process model to separate the contributions of stimulus dependence and spiking history to single-neuron responses, we found that the neurons respond primarily by following the instantaneous ITD rather than exhibiting true direction selectivity. Furthermore, using an optimal classifier to decode the single-neuron responses, we found that neural threshold durations of ITD sweeps for both direction identification and detection overlapped with human threshold durations even though the average response of the neurons could track the instantaneous ITD beyond psychophysical limits. Our results suggest that the IC does not explicitly encode motion direction, but internal neural noise may limit the speed at which we can identify the direction of motion.NEW & NOTEWORTHY Recognizing motion and identifying an object's trajectory are important for parsing a complex auditory scene, but how we do so is unclear. We show that neurons in the auditory midbrain do not exhibit direction selectivity as found in the visual system but instead follow the trajectory of the motion in their temporal firing patterns. Our results suggest that the inherent variability in neural firings may limit our ability to identify motion direction at short durations.


Assuntos
Colículos Inferiores/fisiologia , Percepção de Movimento , Localização de Som , Adulto , Animais , Potenciais Evocados Auditivos , Feminino , Audição , Humanos , Colículos Inferiores/citologia , Masculino , Pessoa de Meia-Idade , Neurônios/fisiologia , Coelhos
8.
Front Neurosci ; 12: 349, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896080

RESUMO

Prior research has shown that musical beats are salient at the level of the cortex in humans. Yet below the cortex there is considerable sub-cortical processing that could influence beat perception. Some biases, such as a tempo preference and an audio frequency bias for beat timing, could result from sub-cortical processing. Here, we used models of the auditory-nerve and midbrain-level amplitude modulation filtering to simulate sub-cortical neural activity to various beat-inducing stimuli, and we used the simulated activity to determine the tempo or beat frequency of the music. First, irrespective of the stimulus being presented, the preferred tempo was around 100 beats per minute, which is within the range of tempi where tempo discrimination and tapping accuracy are optimal. Second, sub-cortical processing predicted a stronger influence of lower audio frequencies on beat perception. However, the tempo identification algorithm that was optimized for simple stimuli often failed for recordings of music. For music, the most highly synchronized model activity occurred at a multiple of the beat frequency. Using bottom-up processes alone is insufficient to produce beat-locked activity. Instead, a learned and possibly top-down mechanism that scales the synchronization frequency to derive the beat frequency greatly improves the performance of tempo identification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA