RESUMO
Cadmium, a hazardous heavy metal prevalent in plants and soil, poses a significant threat to human health, particularly as approximately 60% of the global population consumes wheat, which can accumulate high levels of Cd through its roots. This uptake leads to the translocation of Cd to the shoots and grains, exacerbating the potential health risks. However, promising results have been observed with the use of moringa leaf extract (MLE) foliar spray in mitigating the adverse effects of Cd stress. The current experiment was conducted to find out the Cd stress tolerance of wheat varieties V1 = Akbar-19 and V2 = Dilkash-2020 under exogenous spray of MLE. The treatments of this study were T0 = 0% MLE + 0 µM Cd, T1 = 3% MLE + 0 µM Cd, T2 = 0% MLE + 400 µM Cd, and T3 = 3% MLE + 400 µM Cd. Cd stress demonstrated a significant reduction in morphological attributes as shoot and root fresh weight (22%), shoot and root dry weight (24.5%), shoot and root length (22.5%), area of leaf and number of leaves 30.5%, and photosynthetic attributes (69.8%) in comparison with control. Exposure of wheat plants to Cd toxicity cause oxidative stress, increased H2O2, and MDA up to 75% while foliar application of MLE reduced the activities of reactive oxygen species (ROS). The activity of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and ascorbic acid (AsA) increased up to 81.5% as well as organic osmolytes such as phenolics, total soluble proteins, and total soluble sugars were improved up to 77% by MLE applications under Cd stress. Higher accumulation of ionic contents root Na+ (22%) and Cd (44%) was documented in plants under Cd stress as compared to control, while uptake of root mineral ions Ca2+ and K+ was 35% more in MLE-treated plants. In crux, Cd toxicity significantly declined the growth, photosynthetic, and biochemical parameters while 3% MLE application was found effective in alleviating the Cd toxicity by improving growth and physiological parameters while declining reactive oxygen species and root Na+ as well as Cd uptake in wheat.
RESUMO
Drought stress is a major abiotic stress affecting the performance of wheat (Triticum aestivum L.). The current study evaluated the effects of drought on wheat phenology, physiology, and biochemistry; and assessed the effectiveness of foliar-applied sulfhydryl thiourea to mitigate drought-induced oxidative stress. The treatments were: wheat varieties; V1 = Punjab-2011, V2 = Galaxy-2013, V3 = Ujala-2016, and V4 = Anaaj-2017, drought stress; D1 = control (80% field capacity [FC]) and D2 = drought stress (40% FC), at the reproductive stage, and sulfhydryl thiourea (S) applications; S0 = control-no thiourea and S1 = foliar thiourea application @ 500 mg L-1. Results of this study indicated that growth parameters, including height, dry weight, leaf area index (LAI), leaf area duration (LAD), crop growth rate (CGR), net assimilation rate (NAR) were decreased under drought stress-40% FC, as compared to control-80% FC. Drought stress reduced the photosynthetic efficiency, water potential, transpiration rates, stomatal conductances, and relative water contents by 18, 17, 26, 29, and 55% in wheat varieties as compared to control. In addition, foliar chlorophyll a, and b contents were also lowered under drought stress in all wheat varieties due to an increase in malondialdehyde and electrolyte leakage. Interestingly, thiourea applications restored wheat growth and yield attributes by improving the production and activities of proline, antioxidants, and osmolytes under normal and drought stress as compared to control. Thiourea applications improved the osmolyte defense in wheat varieties as peroxidase, superoxide dismutase, catalase, proline, glycine betaine, and total phenolic were increased by 13, 20, 12, 17, 23, and 52%; while reducing the electrolyte leakage and malondialdehyde content by 49 and 32% as compared to control. Among the wheat varieties, Anaaj-2017 showed better resilience towards drought stress and also gave better response towards thiourea application based on morpho-physiological, biochemical, and yield attributes as compared to Punjab-2011, Galaxy-2013, and Ujala-2016. Eta-square values showed that thiourea applications, drought stress, and wheat varieties were key contributors to most of the parameters measured. In conclusion, the sulfhydryl thiourea applications improved the morpho-physiology, biochemical, and yield attributes of wheat varieties, thereby mitigating the adverse effects of drought. Moving forward, detailed studies pertaining to the molecular and genetic mechanisms under sulfhydryl thiourea-induced drought stress tolerance are warranted.
Assuntos
Secas , Estresse Oxidativo , Folhas de Planta , Tioureia , Triticum , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/fisiologia , Tioureia/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Antioxidantes/metabolismo , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Água/metabolismo , Estresse Fisiológico/efeitos dos fármacosRESUMO
Iron-nanoparticles (Fe-NPs) are increasingly been utilized in environmental applications due to their efficacy and strong catalytic activities. The novelty of nanoparticle science had attracted many researchers and especially for their green synthesis, which can effectively reuse biological resources during the polymerization reactions. Thus, the synthesis of Fe-NPs utilizing plant extracts could be considered as the eco-friendly, simple, rapid, energy-efficient, sustainable, and cost-effective. The green synthesis route can be recognized as a practical, valuable, and economically effective alternative for large-scale production. During the production process, some biomolecules present in the extracts undergo metal salts reduction, which can serve as both a capping and reducing mechanism, enhancing the reactivity and stability of green-synthesized Fe-NPs. The diversity of species provided a wide range of potential sources for green synthesis of Fe-NPs. With improved understanding of the specific biomolecules involved in the bioreduction and stabilization processes, it will become easier to identify and utilize new, potential plant materials for Fe-NPs synthesis. Newly synthesized Fe-NPs require different characterization techniques such as transmission electron microscope, ultraviolet-visible spectrophotometry, and X-ray absorption fine structure, etc, for the determination of size, composition, and structure. This review described and assessed the recent advancements in understanding green-synthesized Fe-NPs derived from plant-based material. Detailed information on various plant materials suitable of yielding valuable biomolecules with potential diverse applications in environmental safety. Additionally, this review examined the characterization techniques employed to analyze Fe-NPs, their stability, accumulation, mobility, and fate in the environment. Holistically, the review assessed the applications of Fe-NPs in remediating wastewaters, organic residues, and inorganic contaminants. The toxicity of Fe-NPs was also addressed; emphasizing the need to refine the synthesis of green Fe-NPs to ensure safety and environmental friendliness. Moving forward, the future challenges and opportunities associated with the green synthesis of Fe-NPs would motivate novel research about nanoparticles in new directions.
Assuntos
Poluentes Ambientais , Química Verde , Ferro , Nanopartículas Metálicas , Extratos Vegetais , Química Verde/métodos , Nanopartículas Metálicas/química , Ferro/química , Poluentes Ambientais/química , Extratos Vegetais/química , Recuperação e Remediação Ambiental/métodosRESUMO
Canola, a vital oilseed crop, is grown globally for food and biodiesel. With the enormous demand for growing various crops, the utilization of agriculturally marginal lands is emerging as an attractive alternative, including brackish-saline transitional lands. Salinity is a major abiotic stress limiting growth and productivity of most crops, and causing food insecurity. Salicylic acid (SA), a small-molecule phenolic compound, is an essential plant defense phytohormone that promotes immunity against pathogens. Recently, several studies have reported that SA was able to improve plant resilience to withstand high salinity. For this purpose, a pot experiment was carried out to ameliorate the negative effects of sodium chloride (NaCl) on canola plants through foliar application of SA. Two canola varieties Faisal (V1) and Super (V2) were assessed for their growth performance during exposure to high salinity i.e. 0 mM NaCl (control) and 200 mM NaCl. Three levels of SA (0, 10, and 20 mM) were applied through foliar spray. The experimental design used for this study was completely randomized design (CRD) with three replicates. The salt stress reduced the shoot and root fresh weights up to 50.3% and 47% respectively. In addition, foliar chlorophyll a and b contents decreased up to 61-65%. Meanwhile, SA treatment diminished the negative effects of salinity and enhanced the shoot fresh weight (49.5%), root dry weight (70%), chl. a (36%) and chl. b (67%). Plants treated with SA showed an increased levels of both enzymatic i.e. (superoxide dismutase (27%), peroxidase (16%) and catalase (34%)) and non-enzymatic antioxidants i.e. total soluble protein (20%), total soluble sugar (17%), total phenolic (22%) flavonoids (19%), anthocyanin (23%), and endogenous ascorbic acid (23%). Application of SA also increased the levels of osmolytes i.e. glycine betaine (31%) and total free proline (24%). Salinity increased the concentration of Na+ ions and concomitantly decreased the K+ and Ca2+ absorption in canola plants. Overall, the foliar treatments of SA were quite effective in reducing the negative effects of salinity. By comparing both varieties of canola, it was observed that variety V2 (Super) grew better than variety V1 (Faisal). Interestingly, 20 mM foliar application of SA proved to be effective in ameliorating the negative effects of high salinity in canola plants.
Assuntos
Brassica napus , Ácido Salicílico , Estresse Salino , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Estresse Salino/efeitos dos fármacos , Clorofila/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Antioxidantes/metabolismoRESUMO
Drought stress poses a significant threat to Brassica napus (L.), impacting its growth, yield, and profitability. This study investigates the effects of foliar application of individual and interactive pharmaceutical (Paracetamol; 0 and 250 mg L-1) and amino acid (0 and 4 ml/L) on the growth, physiology, and yield of B. napus under drought stress. Seedlings were subjected to varying levels of drought stress (100% field capacity (FC; control) and 50% FC). Sole amino acid application significantly improved chlorophyll content, proline content, and relative water contents, as well as the activities of antioxidative enzymes (such as superoxide dismutase and catalase) while potentially decreased malondialdehyde and hydrogen peroxide contents under drought stress conditions. Pearson correlation analysis revealed strong positive correlations between these parameters and seed yield (R2 = 0.8-1), indicating their potential to enhance seed yield. On the contrary, sole application of paracetamol exhibited toxic effects on seedling growth and physiological aspects of B. napus. Furthermore, the combined application of paracetamol and amino acids disrupted physio-biochemical functions, leading to reduced yield. Overall, sole application of amino acids proves to be more effective in ameliorating the negative effects of drought on B. napus.
RESUMO
Researchers are increasingly concerned about antimony (Sb) in ecosystems and the environment. Sb primarily enters the environment through anthropogenic (urbanization, industries, coal mining, cars, and biosolid wastes) and geological (natural and chemical weathering of parent material, leaching, and wet deposition) processes. Sb is a hazardous metal that can potentially harm human health. However, no comprehensive information is available on its sources, how it behaves in soil, and its bioaccumulation. Thus, this study reviews more than 160 peer-reviewed studies examining Sb's origins, geochemical distribution and speciation in soil, biogeochemical mechanisms regulating Sb mobilization, bioavailability, and plant phytotoxicity. In addition, Sb exposure effects plant physio-morphological and biochemical attributes were investigated. The toxicity of Sb has a pronounced impact on various aspects of plant life, including a reduction in seed germination and impeding plant growth and development, resulting from restricted essential nutrient uptake, oxidative damages, disruption of photosynthetic system, and amino acid and protein synthesis. Various widely employed methods for Sb remediation, such as organic manure and compost, coal fly ash, biochar, phytoremediation, microbial-based bioremediation, micronutrients, clay minerals, and nanoremediation, are reviewed with a critical assessment of their effectiveness, cost-efficiency, and suitability for use in agricultural soils. This review shows how plants deal with Sb stress, providing insights into lowering Sb levels in the environment and lessening risks to ecosystems and human health along the food chain. Examining different methods like bioaccumulation, bio-sorption, electrostatic attraction, and complexation actively works to reduce toxicity in contaminated agricultural soil caused by Sb. In the end, the exploration of recent advancements in genetics and molecular biology techniques are highlighted, which offers valuable insights into combating Sb toxicity. In conclusion, the findings of this comprehensive review should help develop innovative and useful strategies for minimizing Sb absorption and contamination and thus successfully managing Sb-polluted soil and plants to reduce environmental and public health risks.
Assuntos
Antimônio , Biodegradação Ambiental , Plantas , Poluentes do Solo , Solo , Antimônio/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Plantas/metabolismo , Plantas/efeitos dos fármacos , Solo/química , Recuperação e Remediação Ambiental/métodos , Poluição Ambiental , EcossistemaRESUMO
[This corrects the article DOI: 10.3389/fpls.2023.1238704.].
RESUMO
High temperature stress influences plant growth, seed yield, and fatty acid contents by causing oxidative damage. This study investigated the potential of thiourea (TU) to mitigate oxidative stress and restoring seed oil content and quality in canola. The study thoroughly examined three main factors: (i) growth conditions-control and high temperature stress (35 °C); (ii) TU supplementation (1000 mg/L)-including variations like having no TU, water application at the seedling stage, TU application at seedling stage (BBCH Scale-39), water spray at anthesis stage, and TU application at anthesis stage (BBCH Scale-60); (iii) and two canola genotypes, 45S42 and Hiola-401, were studied separately. High temperature stress reduced growth and tissue water content, as plant height and relative water contents were decreased by 26 and 36% in 45S42 and 27 and 42% Hiola-401, respectively, resulting in a substantial decrease in seed yield per plant by 36 and 38% in 45S42 and Hiola-401. Seed oil content and quality parameters were also negatively affected by high temperature stress as seed oil content was reduced by 32 and 35% in 45S42 and Hiola-401. High-temperature stress increased the plant stress indicators like malondialdehyde, H2O2 content, and electrolyte leakage; these indicators were increased in both canola genotypes as compared to control. Interestingly, TU supplementation restored plant performance, enhancing height, relative water content, foliar chlorophyll (SPAD value), and seed yield per plant by 21, 15, 30, and 28% in 45S42; 19, 13, 26, and 21% in Hiola-401, respectively, under high temperature stress as compared to control. In addition, seed quality, seed oil content, linoleic acid, and linolenic acid were improved by 16, 14, and 22% in 45S42, and 16, 11, and 23% in Hiola-401, as compared to control. The most significant improvements in canola seed yield per plant were observed when TU was applied at the anthesis stage. Additionally, the research highlighted that canola genotype 45S42 responded better to TU applications and exhibited greater resilience against high temperature stress compared to genotype Hiola-401. This interesting study revealed that TU supplementation, particularly at the anthesis stage, improved high temperature stress tolerance, seed oil content, and fatty acid profile in two canola genotypes.
Assuntos
Antioxidantes , Brassica napus , Sementes , Tioureia , Brassica napus/genética , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Tioureia/farmacologia , Tioureia/análogos & derivados , Antioxidantes/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Temperatura Alta , Estresse Oxidativo/efeitos dos fármacos , Genótipo , Resposta ao Choque Térmico/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismoRESUMO
[This corrects the article DOI: 10.3389/fpls.2023.1238704.].
RESUMO
Pea, member of the plant family Leguminosae, play a pivotal role in global food security as essential legumes. However, their production faces challenges stemming from the detrimental impacts of abiotic stressors, leading to a concerning decline in output. Salinity stress is one of the major factors that limiting the growth and productivity of pea. However, biochar amendment in soil has a potential role in alleviating the oxidative damage caused by salinity stress. The purpose of the study was to evaluate the potential role of biochar amendment in soil that may mitigate the adverse effect of salinity stress on pea. The treatments of this study were, (a) Pea varieties; (i) V1 = Meteor and V2 = Green Grass, Salinity Stress, (b) Control (0 mM) and (ii) Salinity (80 mM) (c) Biochar applications; (i) Control, (ii) 8 g/kg soil (56 g) and (iii) 16 g/kg soil (112 g). Salinity stress demonstrated a considerable reduction in morphological parameters as Shoot and root length decreased by (29% and 47%), fresh weight and dry weight of shoot and root by (85, 63%) and (49, 68%), as well as area of leaf reduced by (71%) among both varieties. Photosynthetic pigments (chlorophyll a, b, and carotenoid contents decreased under 80 mM salinity up to (41, 63, 55 and 76%) in both varieties as compared to control. Exposure of pea plants to salinity stress increased the oxidative damage by enhancing hydrogen peroxide and malondialdehyde content by (79 and 89%), while amendment of biochar reduced their activities as, (56% and 59%) in both varieties. The activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) were increased by biochar applications under salinity stress as, (49, 59, and 86%) as well as non-enzymatic antioxidants as, anthocyanin and flavonoids improved by (112 and 67%). Organic osmolytes such as total soluble proteins, sugars, and glycine betaine were increased up to (57, 83, and 140%) by biochar amendment. Among uptake of mineral ions, shoot and root Na+ uptake was greater (144 and 73%) in saline-stressed plants as compared to control, while shoot and root Ca2+ and K+ were greater up to (175, 119%) and (77, 146%) in biochar-treated plants. Overall findings revealed that 16 g/kg soil (112 g) biochar was found to be effective in reducing salinity toxicity by causing reduction in reactive oxygen species and root and shoot Na+ ions uptake and improving growth, physiological and anti-oxidative activities in pea plants (Fig. 1). Figure 1 A schematic diagram represents two different mechanisms of pea under salinity stress (control and 80 mM NaCl) with Biochar (8 and 16 g/kg soil).
Assuntos
Carvão Vegetal , Pisum sativum , Solo , Pisum sativum/efeitos dos fármacos , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Solo/química , Fotossíntese/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Salinidade , Clorofila/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismoRESUMO
Pea (Pisum sativum L.), a globally cultivated leguminous crop valued for its nutritional and economic significance, faces a critical challenge of soil salinity, which significantly hampers crop growth and production worldwide. A pot experiment was carried out in the Botanical Garden, The Islamia University of Bahawalpur to alleviate the negative impacts of sodium chloride (NaCl) on pea through foliar application of ascorbic acid (AsA). Two pea varieties Meteor (V1) and Sarsabz (V2) were tested against salinity, i.e. 0 mM NaCl (Control) and 100 mM NaCl. Three levels of ascorbic acid 0 (Control), 5 and 10 mM were applied through foliar spray. The experimental design was completely randomized (CRD) with three replicates. Salt stress resulted in the suppression of growth, photosynthetic activity, and yield attributes in pea plants. However, the application of AsA treatments effectively alleviated these inhibitory effects. Under stress conditions, the application of AsA treatment led to a substantial increase in chlorophyll a (41.1%), chl. b (56.1%), total chl. contents (44.6%) and carotenoids (58.4%). Under salt stress, there was an increase in Na+ accumulation, lipid peroxidation, and the generation of reactive oxygen species (ROS). However, the application of AsA increased the contents of proline (26.9%), endogenous AsA (23.1%), total soluble sugars (17.1%), total phenolics (29.7%), and enzymatic antioxidants i.e. SOD (22.3%), POD (34.1%) and CAT (39%) in both varieties under stress. Salinity reduced the yield attributes while foliarly applied AsA increased the pod length (38.7%), number of pods per plant (40%) and 100 seed weight (45.2%). To sum up, the application of AsA alleviated salt-induced damage in pea plants by enhancing photosynthetic pigments, both enzymatic and non-enzymatic activities, maintaining ion homeostasis, and reducing excessive ROS accumulation through the limitation of lipid peroxidation. Overall, V2 (Sarsabz) performed better as compared to the V1 (Meteor).
Assuntos
Antioxidantes , Ácido Ascórbico , Antioxidantes/metabolismo , Clorofila A , Peroxidação de Lipídeos , Pisum sativum , Espécies Reativas de Oxigênio , Estresse Salino , Cloreto de Sódio/farmacologiaRESUMO
Heavy metals (HMs) contamination, owing to their potential links to various chronic diseases, poses a global threat to agriculture, environment, and human health. Nickel (Ni) is an essential element however, at higher concentration, it is highly phytotoxic, and affects major plant functions. Beneficial roles of plant growth regulators (PGRs) and organic amendments in mitigating the adverse impacts of HM on plant growth has gained the attention of scientific community worldwide. Here, we performed a greenhouse study to investigate the effect of indole-3-acetic acid (IAA @ 10- 5 M) and compost (1% w/w) individually and in combination in sustaining cauliflower growth and yield under Ni stress. In our results, combined application proved significantly better than individual applications in alleviating the adverse effects of Ni on cauliflower as it increased various plant attributes such as plant height (49%), root length (76%), curd height and diameter (68 and 134%), leaf area (75%), transpiration rate (36%), stomatal conductance (104%), water use efficiency (143%), flavonoid and phenolic contents (212 and 133%), soluble sugars and protein contents (202 and 199%), SPAD value (78%), chlorophyll 'a and b' (219 and 208%), carotenoid (335%), and NPK uptake (191, 79 and 92%) as compared to the control. Co-application of IAA and compost reduced Ni-induced electrolyte leakage (64%) and improved the antioxidant activities, including APX (55%), CAT (30%), SOD (43%), POD (55%), while reducing MDA and H2O2 contents (77 and 52%) compared to the control. The combined application also reduced Ni uptake in roots, shoots, and curd by 51, 78 and 72% respectively along with an increased relative production index (78%) as compared to the control. Hence, synergistic application of IAA and compost can mitigate Ni induced adverse impacts on cauliflower growth by immobilizing it in the soil.
Assuntos
Brassica , Compostagem , Ácidos Indolacéticos , Poluentes do Solo , Humanos , Níquel/metabolismo , Níquel/toxicidade , Brassica/metabolismo , Peróxido de Hidrogênio/metabolismo , Rizosfera , Clorofila A , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismoRESUMO
Chromium (Cr) contamination of soil has substantially deteriorated soil health and has interfered with sustainable agricultural production worldwide and therefore, its remediation is inevitable. Inoculation of plant growth promoting rhizobacteria (PGPR) in association with nanotechnology has exerted broad based impacts in agriculture, and there is an urgent need to exploit their synergism in contaminated soils. Here, we investigated the effect of co-application of Cr-tolerant "Pseudomonas aeruginosa CKQ9" strain and nano zerovalent iron (nZVI) in improving the phytoremediation potential of aloe vera (Aloe barbadensis L.) under Cr contamination. Soil was contaminated by using potassium dichromate (K2Cr2O7) salt and 15 mg kg-1 contamination level in soil was maintained via spiking and exposure to Cr lasted throughout the duration of the experiment (120 days). We observed that the co-application alleviated the adverse impacts of Cr on aloe vera, and improved various plant attributes such as plant height, root area, number of leaves and gel contents by 51, 137, 67 and 49% respectively as compared to control treatment under Cr contamination. Similarly, significant boost in the activities of various antioxidants including catalase (124%), superoxide dismutase (87%), ascorbate peroxidase (36%), peroxidase (89%) and proline (34%) was pragmatic under contaminated soil conditions. In terms of soil Cr concentration and its plant uptake, co-application of P. aeruginosa and nZVI also reduced available Cr concentration in soil (50%), roots (77%) and leaves (84%), while simultaneously increasing the relative production index by 225% than un-inoculated control. Hence, integrating PGPR with nZVI can be an effective strategy for enhancing the phytoremediation potential of aloe vera.
Combined effect of PGPR and nanotechnology in the bioremediation of toxic contaminants is well reported in literature. Most of these reports comprise the use of hyperaccumulator plants for phytoextraction of heavy metals. However, phytostabilization potential of hyperaccumulators is still un-explored. Current study investigated the role of PGPR and Fe-NPs in suppressing the uptake of Cr in aloe vera, a hyperaccumulator plant.
Assuntos
Aloe , Biodegradação Ambiental , Cromo , Ferro , Pseudomonas aeruginosa , Poluentes do Solo , Cromo/metabolismo , Ferro/metabolismo , Poluentes do Solo/metabolismo , Pseudomonas aeruginosa/fisiologiaRESUMO
Lead (Pb) is one of the most dreadful non-essential elements whose toxicity has been well reported worldwide due to its interference with the major plant functions and its overall yield. Bioremediation techniques comprising the application of beneficial microorganisms have gained attention in recent times owing to their ecofriendly nature. Addition of organic matter to soil has been reported to stimulate microbial activities. Compost application improves soil structure and binds toxic contaminants due to its larger surface area and presence of functional groups. Furthermore, it stimulates soil microbial activities by acting as C-source. So, in current study, we investigated the individual and synergistic potential of two lead (Pb)-tolerant Pseudomonas strains alongwith compost (1% w/w) in sustaining sunflower growth under Pb contaminated soil conditions. Lead chloride (PbCl2) salt was used for raising desired Pb concentration (500â¯mgâ¯kg-1). Results revealed that Pb stress drastically affected all the measured attributes of sunflower plant, however joint application of rhizobacteria and compost counteracted these adverse effects. Among them, co-application of str-1 and compost proved to be significantly better than str-2, as its inoculation significantly improved shoot and root lengths (64 and 76%), leaf area and leaves plant-1 (95 and 166%), 100-achene weight (200%), no. of flowers plant-1 (138%), chl 'a', 'b' and carotenoid (86, 159 and 33%) contents in sunflower as compared to control treatments. Furthermore, inoculation of Pseudomonas fluorescens along with compost increased the NPK in achene (139, 200 and 165%), flavonoid and phenolic contents (258 and 185%) along with transpiration and photosynthetic rates (54 and 72%) in leaves as compared to control treatment under Pb contamination. In addition, Pb entry to roots, shoots and achene were significantly suppressed under by 87, 90 and 91% respectively due to integrated application of compost and str-1 as evident by maximum Pb-immobilization efficiency (97%) obtained in this treatment. Similarly, bioconcentration factors for roots, shoots and achene were found to be 0.58, 0.18 and 0.0055 with associated translocation factor (0.30), which also revealed phytostabilization of Pb under combined application of PGPR and compost. Since, phytoremediation of heavy metals under current scenario of increasing global population is inevitable, results of the current study concluded that tolerant PGPR species along with organic amendments such as compost can inhibit Pb uptake by sunflower and confer Pb tolerance via improved nutrient uptake, physiology, antioxidative defense and gas exchange.
Assuntos
Compostagem , Helianthus , Poluentes do Solo , Antioxidantes/metabolismo , Helianthus/metabolismo , Pseudomonas/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Solo/química , Nutrientes , Poluentes do Solo/análiseRESUMO
Cadmium (Cd) is classified as a heavy metal (HM) and is found into the environment through both natural processes and intensified anthropogenic activities such as industrial operations, mining, disposal of metal-laden waste like batteries, as well as sludge disposal, excessive fertilizer application, and Cd-related product usage. This rising Cd disposal into the environment carries substantial risks to the food chain and human well-being. Inadequate regulatory measures have led to Cd bio-accumulation in plants, which is increasing in an alarming rate and further jeopardizing higher trophic organisms, including humans. In response, an effective Cd decontamination strategy such as phytoremediation emerges as a potent solution, with innovations in nanotechnology like biochar (BC) and nanoparticles (NPs) further augmenting its effectiveness for Cd phytoremediation. BC, derived from biomass pyrolysis, and a variety of NPs, both natural and less toxic, actively engage in Cd removal during phytoremediation, mitigating plant toxicity and associated hazards. This review scrutinizes the application of BC and NPs in Cd phytoremediation, assessing their synergistic mechanism in influencing plant growth, genetic regulations, structural transformations, and phytohormone dynamics. Additionally, the review also underscores the adoption of this sustainable and environmentally friendly strategies for future research in employing BC-NP microaggregates to ameliorate Cd phytoremediation from soil, thereby curbing ecological damage due to Cd toxicity.
Assuntos
Carvão Vegetal , Metais Pesados , Nanopartículas , Poluentes do Solo , Humanos , Cádmio/análise , Biodegradação Ambiental , Metais Pesados/análise , Plantas , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análiseRESUMO
Wheat is a staple food crop that provides a significant portion of the world's daily caloric intake, serving as a vital source of carbohydrates and dietary fiber for billions of people. Seed shape studies of wheat typically involve the use of digital image analysis software to quantify various seed shape parameters such as length, width, area, aspect ratio, roundness, and symmetry. This study presents a comprehensive investigation into the water-absorbing capacity of seeds from 120 distinct wheat lines, leveraging digital image analysis techniques facilitated by SmartGrain software. Water absorption is a pivotal process in the early stages of seed germination, directly influencing plant growth and crop yield. SmartGrain, a powerful image analysis tool, was employed to extract precise quantitative data from digital images of wheat seeds, enabling the assessment of various seed traits in relation to their water-absorbing capacity. The analysis revealed significant transformations in seed characteristics as they absorbed water, including changes in size, weight, shape, and more. Through statistical analysis and correlation assessments, we identified robust relationships between these seed traits, both before and after water treatment. Principal Component Analysis (PCA) and Agglomerative Hierarchical Clustering (AHC) were employed to categorize genotypes with similar trait patterns, providing insights valuable for crop breeding and genetic research. Multiple linear regression analysis further elucidated the influence of specific seed traits, such as weight, width, and distance, on water-absorbing capacity. Our study contributes to a deeper understanding of seed development, imbibition, and the crucial role of water absorption in wheat. These insights have practical implications in agriculture, offering opportunities to optimize breeding programs for improved water absorption in wheat genotypes. The integration of SmartGrain software with advanced statistical methods enhances the reliability and significance of our findings, paving the way for more efficient and resilient wheat crop production. Significant changes in wheat seed shape parameters were observed after imbibition, with notable increases in area, perimeter, length, width, and weight. The length-to-width ratio (LWR) and circularity displayed opposite trends, with higher values before imbibition and lower values after imbibition.
Assuntos
Melhoramento Vegetal , Triticum , Humanos , Triticum/genética , Reprodutibilidade dos Testes , Sementes , Software , Germinação/genéticaRESUMO
Malnutrition, often termed "hidden hunger," represents a pervasive global issue carrying significant implications for health, development, and socioeconomic conditions. Addressing the challenge of inadequate essential nutrients, despite sufficient caloric intake, is crucial. Biofortification emerges as a promising solution by enhance the presence of vital nutrients like iron, zinc, iodine, and vitamin A in edible parts of different crop plants. Crop biofortification can be attained through either agronomic methods or genetic breeding techniques. Agronomic strategies for biofortification encompass the application of mineral fertilizers through foliar or soil methods, as well as leveraging microbe-mediated mechanisms to enhance nutrient uptake. On the other hand, genetic biofortification involves the strategic crossing of plants to achieve a desired combination of genes, promoting balanced nutrient uptake and bioavailability. Additionally, genetic biofortification encompasses innovative methods such as speed breeding, transgenic approaches, genome editing techniques, and integrated omics approaches. These diverse strategies collectively contribute to enhancing the nutritional profile of crops. This review highlights the above-said genetic biofortification strategies and it also covers the aspect of reduction in antinutritional components in food through genetic biofortification.
Assuntos
Biofortificação , Fome , Biofortificação/métodos , Melhoramento Vegetal , Produtos Agrícolas/genética , SoloRESUMO
Heavy metal stress affects crop growth and yields as wheat (Triticum aestivum L.) growth and development are negatively affected under heavy metal stress. The study examined the effect of cobalt chloride (CoCl2) stress on wheat growth and development. To alleviate this problem, a pot experiment was done to analyze the role of sulfur-rich thiourea (STU) in accelerating the defense system of wheat plants against cobalt toxicity. The experimental treatments were, i) Heavy metal stress (a) control and (b) Cobalt stress (300 µM), ii) STU foliar applications; (a) control and (b) 500 µM single dose was applied after seven days of stress, and iii) Wheat varieties (a) FSD-2008 and (b) Zincol-2016. The results revealed that cobalt stress decreased chlorophyll a by 10%, chlorophyll b by 16%, and carotenoids by 5% while foliar application of STU increased these photosynthetic pigments by 16%, 15%, and 15% respectively under stress conditions as in contrast to control. In addition, cobalt stress enhances hydrogen peroxide production by 11% and malondialdehyde (MDA) by 10%. In comparison, STU applications at 500 µM reduced the production of these reactive oxygen species by 5% and by 20% by up-regulating the activities of antioxidants. Results have revealed that the activities of SOD improved by 29%, POD by 25%, and CAT by 28% under Cobalt stress. Furthermore, the foliar application of STU significantly increased the accumulation of osmoprotectants as TSS was increased by 23% and proline was increased by 24% under cobalt stress. Among wheat varieties, FSD-2008 showed better adaptation under Cobalt stress by showing enhanced photosynthetic pigments and antioxidant activities compared to Zincol-2016. In conclusion, the foliar-applied STU can alleviate the negative impacts of Cobalt stress by improving plant physiological attributes and upregulating the antioxidant defense system in wheat.
Assuntos
Antioxidantes , Metais Pesados , Antioxidantes/farmacologia , Triticum , Clorofila A , Cobalto/toxicidadeRESUMO
Thiourea (TU) is considered an essential and emerging biostimulant against the negative impacts of severe environmental stresses, including drought stress in plants. However, the knowledge about the foliar application of TU to mitigate drought stress in Linum usitatissimum L., has yet to be discovered. The present study was designed to assess the impact of foliar application of TU for its effects against drought stress in two flax cultivars. The study comprised two irrigation regimes [60% field capacity (FC) and the control (100% FC)], along with TU (0, 500, 1000 mg L-1) application at the vegetative stage. The findings indicated that drought stress reduced the shoot fresh weight (44.2%), shoot dry weight (67.5%), shoot length (41.5%), total chlorophyll (51.6%), and carotenoids (58.8%). Drought stress increased both cultivars' hydrogen peroxide (H2O2) and malondialdehyde (MDA). Foliar application of TU (1000 mg L-1) enhanced the growth and chlorophyll contents with or without drought stress. Under drought stress (60% FC), TU decreased MDA and H2O2 contents up to twofold. Moreover, TU application increased catalase (40%), peroxidase (13%), superoxide dismutase (30%), and total soluble protein contents (32.4%) differentially in both cultivars. Nevertheless, TU increased calcium (Ca2+) (42.8%), potassium (K+) (33.4%), and phosphorus (P) (72%) in shoots and decreased the elevated sodium (Na+) (28.2%) ions under drought stress. It is suggested that TU application (1000 mg L-1) enhances the growth potential of flax by enhancing photosynthetic pigment, nutrient uptake, and antioxidant enzymes under drought stress. Research outcomes, therefore, recommend that TU application can ameliorate drought-induced negative effects in L. usitatissimum L. seedlings, resulting in improved plant growth and mineral composition, as depicted by balanced primary and secondary metabolite accumulation.
RESUMO
The pollution of soil and aquatic systems by inorganic and organic chemicals has become a global concern. Economical, eco-friendly, and sustainable solutions are direly required to alleviate the deleterious effects of these chemicals to ensure human well-being and environmental sustainability. In recent decades, biochar has emerged as an efficient material encompassing huge potential to decontaminate a wide range of pollutants from soil and aquatic systems. However, the application of raw biochars for pollutant remediation is confronting a major challenge of not getting the desired decontamination results due to its specific properties. Thus, multiple functionalizing/modification techniques have been introduced to alter the physicochemical and molecular attributes of biochars to increase their efficacy in environmental remediation. This review provides a comprehensive overview of the latest advancements in developing multiple functionalized/modified biochars via biological and other physiochemical techniques. Related mechanisms and further applications of multiple modified biochar in soil and water systems remediation have been discussed and summarized. Furthermore, existing research gaps and challenges are discussed, as well as further study needs are suggested. This work epitomizes the scientific prospects for a complete understanding of employing modified biochar as an efficient candidate for the decontamination of polluted soil and water systems for regenerative development.