Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1701: 464044, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37196519

RESUMO

Offline peptide separation (PS) using high-performance liquid chromatography (HPLC) is currently used to enhance liquid chromatography-tandem mass spectrometry (LC-MS/MS) detection of proteins. In search of more effective methods for enhancing MS proteome coverage, we developed a robust method for intact protein separation (IPS), an alternative first-dimension separation technique, and explored additional benefits that it offers. Comparing IPS to the traditional PS method, we found that both enhance detection of unique protein IDs to a similar magnitude, though in diverse ways. IPS was especially effective in serum, which has a small number of extremely high abundance proteins. PS was more effective in tissues with fewer dominating high-abundance proteins and was more effective in enhancing detection of post-translational modifications (PTMs). Combining the IPS and PS methods together (IPS+PS) was especially beneficial, enhancing proteome detection more than either method could independently. The comparison of IPS+PS versus six PS fractionation pools increased total number of proteins IDs by nearly double, while also significantly increasing number of unique peptides detected per protein, percent peptide sequence coverage of each protein, and detection of PTMs. This IPS+PS combined method requires fewer LC-MS/MS runs than current PS methods would need to obtain similar improvements in proteome detection, and it is robust, time- and cost-effective, and generally applicable to various tissue and sample types.


Assuntos
Proteoma , Proteômica , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas em Tandem , Peptídeos/análise
2.
Nat Commun ; 13(1): 2640, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552390

RESUMO

The p97 AAA+ATPase is an essential and abundant regulator of protein homeostasis that plays a central role in unfolding ubiquitylated substrates. Here we report two cryo-EM structures of human p97 in complex with its p47 adaptor. One of the conformations is six-fold symmetric, corresponds to previously reported structures of p97, and lacks bound substrate. The other structure adopts a helical conformation, displays substrate running in an extended conformation through the pore of the p97 hexamer, and resembles structures reported for other AAA unfoldases. These findings support the model that p97 utilizes a "hand-over-hand" mechanism in which two residues of the substrate are translocated for hydrolysis of two ATPs, one in each of the two p97 AAA ATPase rings. Proteomics analysis supports the model that one p97 complex can bind multiple substrate adaptors or binding partners, and can process substrates with multiple types of ubiquitin modification.


Assuntos
Chaperonas Moleculares , Ubiquitina , Humanos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Conformação Proteica , Ubiquitina/metabolismo , Proteína com Valosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA