Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Res ; 28: 0043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011520

RESUMO

Acute liver failure (ALF) is a complex syndrome that impairs the liver's function to detoxify bilirubin, ammonia, and other toxic metabolites. Bioartificial liver (BAL) aims to help ALF patients to pass through the urgent period by temporarily undertaking the liver's detoxification functions and promoting the recovery of the injured liver. We genetically modified the hepatocellular cell line HepG2 by stably overexpressing genes encoding UGT1A1, OATP1B1, OTC, ARG1, and CPS1. The resulting SynHeps-II cell line, encapsulated by Cytopore microcarriers, dramatically reduced the serum levels of bilirubin and ammonia, as demonstrated both in vitro using patient plasma and in vivo using ALF animal models. More importantly, we have also completed the 3-dimensional (3D) culturing of cells to meet the demands for industrialized rapid and mass production, and subsequently assembled the plasma-cell contacting BAL (PCC-BAL) system to fulfill the requirements of preclinical experiments. Extracorporeal blood purification of ALF rabbits with SynHeps-II-embedded PCC-BAL saved more than 80% of the animals from rapid death. Mechanistically, SynHeps-II therapy ameliorated liver and brain inflammation caused by high levels of bilirubin and ammonia and promoted liver regeneration by modulating the nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways. Also, SynHeps-II treatment reduced cerebral infiltration of neutrophils, reduced reactive oxygen species (ROS) levels, and mitigated hepatic encephalopathy. Taken together, SynHeps-II cell-based BAL was promising for the treatment of ALF patients and warrants clinical trials.

2.
Biomed Pharmacother ; 175: 116782, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776682

RESUMO

LAG3 is an inhibitory immune checkpoint expressed on activated T and NK cells. Blocking the interaction of LAG3 with its ligands MHC-II and FGL1 renders T cells improved cytotoxicity to cancer cells. Current study generated a panel of LAG3 monoclonal antibodies (mAbs) through immunization of mice followed by phage display. Some of them bound to the D1-D2 domain of LAG3, which is known for the engagement of its ligands FGL1 and MHC-II. Three outperformers, M208, M226, and M234, showed stronger blocking activity than Relatlimab in the FGL1 binding. Furthermore, M234 showed dual inhibition of FGL1 (IC50 of 20.6 nM) and MHC-II binding (IC50 of 6.2 nM) to LAG3. In vitro functional tests showed that M234 significantly stimulated IFN-γ secretion from activated PBMC cells. In vivo studies in a mouse model of hepatocellular carcinoma xenografts demonstrated that combining M234 IgG with GPC3-targeted bispecific antibodies significantly improved efficacy. In addition, GPC3-targeted CAR-T cells secreting IL-21-M234 scFv fusion protein exhibited enhanced activity in inhibiting tumor growth and greatly increased the survival rate of mice. Taken together, M234 has potential in cancer immunotherapy and warrants further clinical trial.


Assuntos
Anticorpos Neutralizantes , Antígenos CD , Imunoterapia , Proteína do Gene 3 de Ativação de Linfócitos , Animais , Humanos , Camundongos , Antígenos CD/imunologia , Antígenos CD/metabolismo , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/imunologia , Ligantes , Imunoterapia/métodos , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Camundongos Endogâmicos BALB C , Ligação Proteica , Feminino , Anticorpos Monoclonais/farmacologia
3.
Pharmacol Res ; 203: 107186, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641176

RESUMO

Chimeric antigen receptor (CAR)-modified T cell therapy has achieved remarkable efficacy in treating hematological malignancies, but it confronts many challenges in treating solid tumors, such as the immunosuppressive microenvironment of the solid tumors. These factors reduce the antitumor activity of CAR-T cells in clinical trials. Therefore, we used the immunocytokine interleukin-12 (IL-12) to enhance the efficacy of CAR-T cell therapy. In this study, we engineered CAR-IL12R54 T cells that targeted mesothelin (MSLN) and secreted a single-chain IL-12 fused to a scFv fragment R54 that recognized a different epitope on mesothelin. The evaluation of the anti-tumor activity of the CAR-IL12R54 T cells alone or in combination with anti-PD-1 antibody in vitro and in vivo was followed by the exploration of the functional mechanism by which the immunocytokine IL-12 enhanced the antitumor activity. CAR-IL12R54 T cells had potency to lyse mesothelin positive tumor cells in vitro. In vivo studies demonstrated that CAR-IL12R54 T cells were effective in controlling the growth of established tumors in a xenograft mouse model with fewer side effects than CAR-T cells that secreted naked IL-12. Furthermore, combination of PD-1 blockade antibody with CAR-IL12R54 T cells elicited durable anti-tumor responses. Mechanistic studies showed that IL12R54 enhanced Interferon-γ (IFN-γ) production and dampened the activity of regulatory T cells (Tregs). IL12R54 also upregulated CXCR6 expression in the T cells through the NF-κB pathway, which facilitated T cell infiltration and persistence in the tumor tissues. In summary, the studies provide a good therapeutic option for the clinical treatment of solid tumors.


Assuntos
Imunoterapia Adotiva , Interleucina-12 , Mesotelina , Receptores de Antígenos Quiméricos , Animais , Interleucina-12/imunologia , Interleucina-12/genética , Humanos , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Linhagem Celular Tumoral , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/antagonistas & inibidores , Microambiente Tumoral/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Interleucina-12/genética , Receptores de Interleucina-12/imunologia , Linfócitos T/imunologia
4.
J Cancer Res Clin Oncol ; 149(16): 15027-15038, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37612388

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has shown promising results in treating blood cancers, but it has limited efficacy against solid tumors that express mesothelin (MSLN). One of the reasons is the immunosuppressive tumor microenvironment, which consists of physical barriers, multiple mechanisms of immune evasion, and various biochemical factors that favor tumor growth and survival. These factors reduce the antitumor activity of MSLN-targeted CAR T cells in clinical trials. Therefore, new therapeutic strategies are needed to enhance the effectiveness of MSLN-targeted CAR T cell therapy. METHODS: To investigate whether the antitumor efficacy of anti-MSLN CAR-T cells depends on the epitopes they recognize, we generated MSLN-targeted CAR T cells that bind to different regions of MSLN (Region I, II, III and Full length). We then evaluated the antitumor activity of MSLN-targeted CAR T cells alone or in combination with the chemotherapeutic drug irinotecan or an anti-PD-1 antibody in vitro and in vivo. RESULTS: We found that MSLN-targeted CAR T cells effectively killed MSLN-positive cancer cells (H9, H226 and Panc-1), but not MSLN-negative cells (A431) in vitro. In a mouse model of H9 tumor xenografts, all CAR T cells showed similar tumor suppression, but an MSLN-targeted scFv with Region I epitope, R47, performed slightly better. Combining irinotecan with CAR_R47 T cells enhanced tumor control synergistically in both H9 xenograft mice and patient-derived xenograft mice. CONCLUSIONS: Our results suggest that irinotecan can enhance the antitumor activity of MSLN-targeted CAR T cells, and offer a promising combination therapy strategy for MSLN-positive solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Mesotelina , Imunoterapia Adotiva/métodos , Irinotecano , Proteínas Ligadas por GPI/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Neoplasias/tratamento farmacológico
5.
Mol Cancer Ther ; 21(1): 149-158, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725191

RESUMO

Hepatocellular carcinoma (HCC) is a world leading cause of cancer-related mortality, and currently no curative treatment for advanced HCC is available. Glypican-3 (GPC3) is an attractive target for HCC immunotherapy. This study explored the efficacy of six GPC3-targeted bispecific antibodies, alone or in combination with chemotherapeutic drug Irinotecan, for the treatment of HCC. The bispecific antibodies were constructed using three different structures, knob-into-hole (KH), scFv-scFv-hFc, and scFv-hFc-scFv, where CD3-targeting mAb OKT3 (scFv) was paired with two representative GPC3 mAbs hYP7 (scFv) and HN3 (VH only) that target different epitopes. The In vitro cell killing assay revealed that all bispecific antibodies efficiently killed GPC3 positive cancer cells, with hYP7-KH, hYP7-OKT3-hFc, and HN3-KH being most potent. In vivo xenograft mouse studies demonstrated that all bispecific antibodies suppressed tumor growth similarly, with hYP7-OKT3-hFc performing slightly better. Combination of hYP7-OKT3-hFc with Irinotecan dramatically improved the efficacy and arrested tumor growth of HepG2, Hep3B, and G1 in xenograft mice. Our results demonstrated that the cell surface proximal bispecific antibody hYP7-OKT3-hFc was superior in terms of potency and the GPC3-targeted bispecific antibody combined with Irinotecan was much potent to control HCC growth.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Imunoterapia/métodos , Irinotecano/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Animais , Anticorpos Biespecíficos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Humanos , Irinotecano/farmacologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos , Análise de Sobrevida
6.
Oncol Lett ; 22(1): 542, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34079595

RESUMO

Targeting inhibitory immune checkpoint molecules has significantly altered cancer treatment regimens. T cell immunoglobulin and mucin domain 3 (TIM3) is one of the major inhibitory immune checkpoints expressed on T cells. Blocking the engagement of TIM3 and its inhibitory ligand galectin-9 may potentiate the effects of immunotherapy or overcome the adaptive resistance to the therapeutic blockade of programmed cell death protein 1, cytotoxic T-lymphocyte-associated protein 4, B- and T-lymphocyte attenuator and lymphocyte-activation gene 3, amongst others, as each of these immune checkpoints harbors unique properties that set it apart from the rest. Heavy chain variable fragment (VH)-derived single-domain antibodies (sdAbs) represent a class of expanding drug candidates. These sdAbs have unique advantages, including their minimal size in the antibody class, ease of expression, broad scope for modular structure design and re-engineering, and excellent tumor penetration. In the present study, two sdAbs, TIM3-R23 and TIM3-R53, were generated by immunizing rabbits with the recombinant extracellular domain of TIM3 and applying phage display technology. These sdAbs were easily expressed in mammalian cells. The purified sdAbs were able to bind to both recombinant and cell surface TIM3, and blocked it from binding to the ligand galectin-9. In vivo studies demonstrated that TIM3-R53 was able to potentiate the antitumor activity of chimeric antigen receptor T cells that targeted mesothelin. In conclusion, the results of the present study suggested that TIM3-R53 may be a novel and attractive immune checkpoint inhibitor against TIM3, which is worthy of further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA