Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (184)2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35723473

RESUMO

As a classical model system of embryo biology, the chicken embryo has been used to investigate embryonic development and differentiation. Delivering exogenous materials into chicken embryos has a great advantage for studying gene function, transgenic breeding, and chimera preparation during embryonic development. Here we show the method of in ovo intravascular injection whereby exogenous materials such as plasmid vectors or modified primordial germ cells (PGCs) can be transferred into donor chicken embryos at early developmental stages. The results show that the intravascular injection through the dorsal aorta and head allows injected materials to diffuse into the whole embryo through the blood circulatory system. In the presented protocol, the efficacy of exogenous plasmid and lentiviral vector introduction, and the colonization of injected exogenous PGCs in the recipient gonad, were determined by observing fluorescence in the embryos. This article describes detailed procedures of this method, thereby providing an excellent approach to studying gene function, embryo and developmental biology, and gonad-chimeric chicken production. In conclusion, this article will allow researchers to perform in ovo intravascular injection of exogenous materials into chicken embryos with great success and reproducibility.


Assuntos
Galinhas , Células Germinativas , Animais , Animais Geneticamente Modificados , Embrião de Galinha , Galinhas/genética , Quimera , Reprodutibilidade dos Testes
2.
Gene ; 794: 145760, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34116118

RESUMO

BMP4 is the critical gene of primordial germ cell formation in mammal, however, the mechanism of PGCs formation in chicken still unknown. In this research, we compared the evolution relationship of different species. Although the protein sequence is highly conservative between mouse, human and chicken, promotors vary among avian and mammal species. Therefore, it is easily to predict that there would be different regulation mechanism of Bmp4 expression in chicken. Here, we elucidate the function of chicken Bmp4 during PGCs formation. In vivo, Bmp4 can promote PGCs development and migration, and increase the expression of key genes (Cvh, c-kit, cxcr4, etc.). Whereas, the expression of these genes will decrease after knocking out Bmp4. After over-expression and knockout Bmp4 in vitro, we found that overexpression of Bmp4 could promote the formation of embryoid bodies (EB) and up-regulate the key genes of PGCs formation and migration, while knockout Bmp4 could inhibit the formation of embryoid bodies and decrease the expression of related genes. Flow and indirect immunofluorescence also indicated the same result. These all results proved that chicken Bmp4 could also promote the formation of PGCs. Furthermore, dual-luciferase activity detection showed that the promotor activity of Bmp4 was positively regulated by transcription factor Zeb1. Overexpression of Zeb1 can also increase the mRNA and protein expression of Bmp4. At the same time, DNA methylation inhibited Bmp4 transcription and histone methylation was able to promote its transcription. In conclusion, this study established that chicken Bmp4 can promote the formation of chicken PGCs. This gene is regulated by DNA, histone methylation and transcription factor Zeb1. These results lay a theoretical foundation for exploring the function and molecular mechanism of Bmp4 in the process of PGCs formation.


Assuntos
Proteína Morfogenética Óssea 4/genética , Células Germinativas Embrionárias/citologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Animais , Proteína Morfogenética Óssea 4/metabolismo , Movimento Celular , Células Cultivadas , Galinhas , Metilação de DNA , Corpos Embrioides/metabolismo , Células Germinativas Embrionárias/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA