Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nano Lett ; 21(24): 10172-10177, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34865498

RESUMO

With continued scaling toward higher component densities, integrated circuits (ICs) contain ever greater lengths of nanowire that are vulnerable to failure via electromigration. Previously, plastic electromigration driven by the "electron wind" has been observed, but not the elastic response to the wind force itself. Here we describe mapping, via electron energy-loss spectroscopy, the density of a lithographically defined aluminum nanowire with sufficient precision to determine both its temperature and its internal pressure. An electrical current density of 108 A/cm2 produces Joule heating, tension upwind, and compression downwind. Surprisingly, the pressure returns to its ambient value well inside the wire, where the current density is still high. This spatial discrepancy points to physics that are not captured by a classical "wind force" model and to new opportunities for optimizing electromigration-resistant IC design.


Assuntos
Elétrons
2.
Ultramicroscopy ; 222: 113198, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33482467

RESUMO

Total electron yield (TEY) imaging is an established scanning transmission X-ray microscopy (STXM) technique that gives varying contrast based on a sample's geometry, elemental composition, and electrical conductivity. However, the TEY-STXM signal is determined solely by the electrons that the beam ejects from the sample. A related technique, X-ray beam-induced current (XBIC) imaging, is sensitive to electrons and holes independently, but requires electric fields in the sample. Here we report that multi-electrode devices can be wired to produce differential electron yield (DEY) contrast, which is also independently sensitive to electrons and holes, but does not require an electric field. Depending on whether the region illuminated by the focused STXM beam is better connected to one electrode or another, the DEY-STXM contrast changes sign. DEY-STXM images thus provide a vivid map of a device's connectivity landscape, which can be key to understanding device function and failure. To demonstrate an application in the area of failure analysis, we image a 100 nm, lithographically-defined aluminum nanowire that has failed after being stressed with a large current density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA