Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 71(1): 370-385, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557303

RESUMO

Extreme climatic events (ECEs) such as droughts and heat waves affect ecosystem functioning and species turnover. This study investigated the effect of elevated CO2 on species' resilience to ECEs. Monoliths of intact soil and their plant communities from an upland grassland were exposed to 2050 climate scenarios with or without an ECE under ambient (390 ppm) or elevated (520 ppm) CO2. Ecophysiological traits of two perennial grasses (Dactylis glomerata and Holcus lanatus) were measured before, during, and after ECE. At similar soil water content, leaf elongation was greater under elevated CO2 for both species. The resilience of D. glomerata increased under enhanced CO2 (+60%) whereas H. lanatus mostly died during ECE. D. glomerata accumulated 30% more fructans, which were more highly polymerized, and 4-fold less sucrose than H. lanatus. The fructan concentration in leaf meristems was significantly increased under elevated CO2. Their relative abundance changed during the ECE, resulting in a more polymerized assemblage in H. lanatus and a more depolymerized assemblage in D. glomerata. The ratio of low degree of polymerization fructans to sucrose in leaf meristems was the best predictor of resilience across species. This study underlines the role of carbohydrate metabolism and the species-dependent effect of elevated CO2 on the resilience of grasses to ECE.


Assuntos
Metabolismo dos Carboidratos , Mudança Climática , Dactylis/fisiologia , Clima Extremo , Holcus/fisiologia , Meristema/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Clima , Especificidade da Espécie
2.
Ann Bot ; 116(6): 1001-15, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25851134

RESUMO

BACKGROUND AND AIMS: Extreme climatic events such as severe droughts are expected to increase with climate change and to limit grassland perennity. The present study aimed to characterize the adaptive responses by which temperate herbaceous grassland species resist, survive and recover from a severe drought and to explore the relationships between plant resource use and drought resistance strategies. METHODS: Monocultures of six native perennial species from upland grasslands and one Mediterranean drought-resistant cultivar were compared under semi-controlled and non-limiting rooting depth conditions. Above- and below-ground traits were measured under irrigation in spring and during drought in summer (50 d of withholding water) in order to characterize resource use and drought resistance strategies. Plants were then rehydrated and assessed for survival (after 15 d) and recovery (after 1 year). KEY RESULTS: Dehydration avoidance through water uptake was associated with species that had deep roots (>1·2 m) and high root mass (>4 kg m(-3)). Cell membrane stability ensuring dehydration tolerance of roots and meristems was positively correlated with fructan content and negatively correlated with sucrose content. Species that survived and recovered best combined high resource acquisition in spring (leaf elongation rate >9 mm d(-1) and rooting depth >1·2 m) with both high dehydration avoidance and tolerance strategies. CONCLUSIONS: Most of the native forage species, dominant in upland grassland, were able to survive and recover from extreme drought, but with various time lags. Overall the results suggest that the wide range of interspecific functional strategies for coping with drought may enhance the resilience of upland grassland plant communities under extreme drought events.


Assuntos
Poaceae/fisiologia , Água/fisiologia , Mudança Climática , Secas , Pradaria , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Estações do Ano
3.
Glob Chang Biol ; 19(11): 3435-48, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23832449

RESUMO

Climate extremes can ultimately reshape grassland services such as forage production and change plant functional type composition. This 3-year field research studied resistance to dehydration and recovery after rehydration of plant community and plant functional types in an upland perennial grassland subjected to climate and cutting frequency (Cut+, Cut-) disturbances by measuring green tissue percentage and above-ground biomass production (ANPP). In year 1, a climate disturbance gradient was applied by co-manipulating temperature and precipitation. Four treatments were considered: control and warming-drought climatic treatment, with or without extreme summer event. In year 2, control and warming-drought treatments were maintained without extreme. In year 3, all treatments received ambient climatic conditions. We found that the grassland community was very sensitive to dehydration during the summer extreme: aerial senescence reached 80% when cumulated climatic water balance fell to -156 mm and biomass declined by 78% at the end of summer. In autumn, canopy greenness and biomass totally recovered in control but not in the warming-drought treatment. However ANPP decreased under both climatic treatments, but the effect was stronger on Cut+ (-24%) than Cut- (-15%). This decline was not compensated by the presence of three functional types because they were negatively affected by the climatic treatments, suggesting an absence of buffering effect on grassland production. In the following 2 years, lasting effects of climate disturbance on ANPP were observable. The unexpected stressful conditions of year 3 induced a decline in grassland production in the Cut+ control treatment. The fact that this treatment cumulated higher (45%) N export over the 3 years suggests that N plays a key role in ANPP stability. As ANPP in this mesic perennial grassland did not show engineering resilience, long-term experimental manipulation is needed. Infrequent mowing appears more appropriate for sustaining grassland ANPP under future climate extremes.


Assuntos
Agricultura/métodos , Clima , Poaceae/crescimento & desenvolvimento , Biomassa , Secas , Nitrogênio/análise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA