Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(38): eadh5396, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37738351

RESUMO

Interferometric methods form the basis of highly sensitive measurement techniques from astronomy to bioimaging. Interferometry typically requires high stability between the measured and reference beams. The presence of rapid phase fluctuations washes out interference fringes, making phase profile recovery impossible. This challenge can be addressed by shortening the measurement time. However, such an approach reduces photon-counting rates, precluding applications in low-intensity imaging. We introduce a phase imaging technique which is immune to time-dependent phase fluctuations. Our technique, relying on intensity correlation instead of direct intensity measurements, allows one to obtain high interference visibility for arbitrarily long acquisition times. We prove the optimality of our method using the Cramér-Rao bound in the extreme case when no more than two photons are detected within the time window of phase stability. Our technique will broaden prospects in phase measurements, including emerging applications such as in infrared and x-ray imaging and quantum and matter-wave interferometry.

2.
Opt Express ; 26(20): 25827-25838, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469678

RESUMO

We analyze the information efficiency of a deep-space optical communication link with background noise, employing the pulse position modulation (PPM) format and a direct-detection receiver based on Geiger-mode photon counting. The efficiency, quantified using Shannon mutual information, is optimized with respect to the PPM order under the constraint of a given average signal power in simple and complete decoding scenarios. We show that the use of complete decoding, which retrieves information from all combinations of detector photocounts occurring within one PPM frame, allows one to achieve information efficiency scaling as the inverse of the square of the distance, i.e. proportional to the received signal power. This represents a qualitative enhancement compared to simple decoding, which treats multiple photocounts within a single PPM frame as erasures and leads to inverse-quartic scaling with the distance. We provide easily computable formulas for the link performance in the limit of diminishing signal power.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA