Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38894025

RESUMO

Aluminum garnets display exceptional adaptability in incorporating mismatching elements, thereby facilitating the synthesis of novel materials with tailored properties. This study explored Ce3+-doped Tb3Al5-xScxO12 crystals (where x ranges from 0.5 to 3.0), revealing a novel approach to control luminescence and photoconversion through atomic size mismatch engineering. Raman spectroscopy confirmed the coexistence of garnet and perovskite phases, with Sc substitution significantly influencing the garnet lattice and induced A1g mode softening up to Sc concentration x = 2.0. The Sc atoms controlled sub-eutectic inclusion formation, creating efficient light scattering centers and unveiling a compositional threshold for octahedral site saturation. This modulation enabled the control of energy transfer dynamics between Ce3+ and Tb3+ ions, enhancing luminescence and mitigating quenching. The Sc admixing process regulated luminous efficacy (LE), color rendering index (CRI), and correlated color temperature (CCT), with adjustments in CRI from 68 to 84 and CCT from 3545 K to 12,958 K. The Ce3+-doped Tb3Al5-xScxO12 crystal (where x = 2.0) achieved the highest LE of 114.6 lm/W and emitted light at a CCT of 4942 K, similar to daylight white. This approach enables the design and development of functional materials with tailored optical properties applicable to lighting technology, persistent phosphors, scintillators, and storage phosphors.

2.
Inorg Chem ; 62(51): 21164-21172, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38095195

RESUMO

It is well-known that the chemical composition of the host material significantly affects the spectroscopic performance of transition metal ions. However, it is worth noting that also the structure and symmetry of crystallographic sites play significant roles in transition metal ion luminescence. In this study, we demonstrate three perovskite structures of strontium titanate forming so-called Ruddlesden-Popper phases doped with Mn4+ ions. The observed reduction in the average Ti4+-O2- distance in the series SrTiO3-Sr2TiO4-Sr3Ti2O7 allowed for a record-breaking shift in the spectral position of Mn4+ emission band with a maximum of around 734 nm and led to an improvement of the already impressive thermometric performance of SrTiO3:Mn4+ in ratiometric and lifetime-based approaches. This research encourages a further search for structures that, with the help of the developed correlations between structural and optical properties, could lead to the discovery of phosphors beyond the limits established so far.

3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 3 Pt 2): 564-575, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35702973

RESUMO

A number of Lu2O3-based materials were reported to present efficient capability of trapping excited charge carriers in metastable excited states formed either by specific dopants or naturally occurring defects. Over the years, abundant experimental data have been collected, which were taken as a solid ground to treat the problem using computational chemistry. Density functional theory (DFT) calculations with an advanced meta generalized gradient approximation (mGGA) functional were used to analyze electron trapping in cubic Lu2O3 doped with Hf. Individual ions of dopant and nearest-neighbor dopant ion pairs were considered. The effects of interstitial anions such as O2- and Cl- were analyzed. In most of the analyzed cases the additional electron charge is localized at the dopant site. However, in many of the studied cases, the dopant/defect states overlap with the conduction band and cannot correspond to electron trapping. The Hf3+ ion in the Lu site of C3i local symmetry ({\rm Hf}^{\times}_{{\rm Lu}-C_{\rm 3i}}) corresponds to a moderate trap depth of 0.8-0.9 eV. Several composite defects corresponding to deeper (1.1-1.4 eV) traps also exist. Unambiguous deep traps (1.5-1.8 eV) correspond to systems with Hf dopant in the cationic void, accompanied by two interstitial oxygen atoms. The results thus indicate that basic `Hf-substitutes-Lu' doping is unlikely to correspond to the deep traps observed experimentally in Lu2O3:Tb,Hf andLu2O3:Pr,Hf and more complex defects must be involved.

4.
Phys Chem Chem Phys ; 21(43): 23826-23832, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31317151

RESUMO

Thermoluminescence of LuPO4:0.1%Yb3+ sintered ceramics was investigated and simultaneous infrared 2F5/2 → 2F7/2 and UV-blue (YbCT3+)* → O2- charge transfer emissions of the Yb3+ impurity were observed around 150 °C (423 K) for the first time. Both photons were generated by one excited Yb3+*. LuPO4:Yb3+ was thus proved to be the first system showing the quantum cutting effect in thermoluminescence. Low concentration of the dopant was proved crucial to observe an intense CT emission at so high temperatures. These data revise deeply those reported previously on the thermal quenching of Yb3+ charge transfer luminescence in orthophosphates. In was formerly claimed that CT luminescence of Yb3+ in LuPO4 and similar hosts is quenched below 300 K. Similarly, the thermoluminescent emission of LuPO4:Yb3+ above room temperature was previously reported to appear only in the IR part of the spectrum around 980 nm. Our results fundamentally change this picture and prove that CT luminescence of Yb3+ in orthophosphates appears to be significant even above 150 °C (423 K). We demonstrate the great significance of the activator concentration in its CT luminescence thermal quenching. The Yb3+ impurity ion was found to act both as an electron trap and as a recombination center. Our data open the possibility to generate intense CT luminescence of Yb3+ in orthophosphates at room temperature and above which may make such phosphors rational for applications previously considered unattainable for them.

5.
Phys Chem Chem Phys ; 20(15): 10266-10274, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29594305

RESUMO

Luminescence properties of SrS:Ce pellets sintered at 1700 °C were investigated under high pressure. Two different Ce3+-related emissions were confirmed to appear in the blue-green and red parts of the spectrum and were shown to shift significantly and linearly to longer wavelengths with increasing pressure. Changes in decay times of both emissions were also thoroughly analyzed. The results confirmed that Ce3+ ion pairing/clustering occurring due to their enhanced mobility at high temperatures is responsible for the appearance of the recently reported red Ce3+ emission in sintered SrS:Ce pellets.

6.
Materials (Basel) ; 7(10): 7059-7072, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28788232

RESUMO

Li2SO4 or (Li2SO4 + SiO2)-mixture fluxes were used to prepare a Lu2O3:Eu powder phosphor as well as an undoped Lu2O3 utilizing commercial lutetia and europia as starting reagents. SEM images showed that the fabricated powders were non-agglomerated and the particles sizes varied from single microns to tens of micrometers depending largely on the flux composition rather than the oxide(s)-to-flux ratio. In the presence of SiO2 in the flux, certain grains grew up to 300-400 µm. The lack of agglomeration and the large sizes of crystallites allowed making single crystal structural measurements and analysis on an undoped Lu2O3 obtained by means of the flux technique. The cubic structure with a = 10.393(2) Å, and Ia space group at 298 K was determined. The most efficient radioluminescence of Lu2O3:Eu powders reached 95%-105% of the commercial Gd2O2S:Eu.

7.
Materials (Basel) ; 7(1): 157-169, 2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28788447

RESUMO

Lu2O3:Pr,Hf ceramics were investigated using mainly thermoluminescence (TL) technique. Their ability to efficiently store energy acquired upon irradiation with X-rays was proven. The best TL performance was achieved for compositions containing 0.025%-0.05% of Pr and about 0.1% of Hf. Further enhancement of TL efficiency was attained by increasing the temperature of sintering of the ceramics up to 1700 °C and applying reducing atmosphere of forming gas. It was also proven that fast cooling after the sintering at 1700 °C significantly enhanced the storage phosphor performance. TL glow curve contained three components peaking around 130, 250 and 350 °C. Among them, the one at 250 °C contributed the most to the total TL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA