Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3947, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729951

RESUMO

Gram-negative bacteria (GNB) are a major cause of neonatal sepsis in low- and middle-income countries (LMICs). Although the World Health Organization (WHO) reports that over 80% of these sepsis deaths could be prevented through improved treatment, the efficacy of the currently recommended first- and second-line treatment regimens for this condition is increasingly affected by high rates of drug resistance. Here we assess three well known antibiotics, fosfomycin, flomoxef and amikacin, in combination as potential antibiotic treatment regimens by investigating the drug resistance and genetic profiles of commonly isolated GNB causing neonatal sepsis in LMICs. The five most prevalent bacterial isolates in the NeoOBS study (NCT03721302) are Klebsiella pneumoniae, Acinetobacter baumannii, E. coli, Serratia marcescens and Enterobacter cloacae complex. Among these isolates, high levels of ESBL and carbapenemase encoding genes are detected along with resistance to ampicillin, gentamicin and cefotaxime, the current WHO recommended empiric regimens. The three new combinations show excellent in vitro activity against ESBL-producing K. pneumoniae and E. coli isolates. Our data should further inform and support the clinical evaluation of these three antibiotic combinations for the treatment of neonatal sepsis in areas with high rates of multidrug-resistant Gram-negative bacteria.


Assuntos
Acinetobacter baumannii , Antibacterianos , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Sepse Neonatal , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Sepse Neonatal/microbiologia , Sepse Neonatal/tratamento farmacológico , Recém-Nascido , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/genética , Amicacina/farmacologia , Amicacina/uso terapêutico , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , beta-Lactamases/genética , beta-Lactamases/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Países em Desenvolvimento , Farmacorresistência Bacteriana Múltipla/genética , Quimioterapia Combinada , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/genética , Serratia marcescens/isolamento & purificação , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Enterobacter cloacae/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Front Pharmacol ; 14: 1291885, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130409

RESUMO

Antimicrobial resistance in the sexually transmitted bacterium Neisseria gonorrhoeae is compromising the management and control of gonorrhea globally. Optimized use and enhanced stewardship of current antimicrobials and development of novel antimicrobials are imperative. The first in class zoliflodacin (spiropyrimidinetrione, DNA Gyrase B inhibitor) is a promising novel antimicrobial in late-stage clinical development for gonorrhea treatment, i.e., the phase III randomized controlled clinical trial (ClinicalTrials.gov Identifier: NCT03959527) was recently finalized, and zoliflodacin showed non-inferiority compared to the recommended ceftriaxone plus azithromycin dual therapy. Doxycycline, the first-line treatment for chlamydia and empiric treatment for non-gonococcal urethritis, will be frequently given together with zoliflodacin because gonorrhea and chlamydia coinfections are common. In a previous static in vitro study, it was indicated that doxycycline/tetracycline inhibited the gonococcal killing of zoliflodacin in 6-h time-kill curve analysis. In this study, our dynamic in vitro hollow-fiber infection model (HFIM) was used to investigate combination therapies with zoliflodacin and doxycycline. Dose-range experiments using the three gonococcal strains WHO F (susceptible to relevant therapeutic antimicrobials), WHO X (extensively drug-resistant, including ceftriaxone-resistant; zoliflodacin-susceptible), and SE600/18 (zoliflodacin-susceptible strain with GyrB S467N substitution) were conducted simulating combination therapy with a single oral dose of zoliflodacin 0.5-4 g combined with a doxycycline daily oral dose of 200 mg administered as 100 mg twice a day, for 7 days (standard dose for chlamydia treatment). Comparing combination therapy of zoliflodacin (0.5-4 g single dose) plus doxycycline (200 mg divided into 100 mg twice a day orally, for 7 days) to zoliflodacin monotherapy (0.5-4 g single dose) showed that combination therapy was slightly more effective than monotherapy in the killing of N. gonorrhoeae and suppressing emergence of zoliflodacin resistance. Accordingly, WHO F was eradicated by only 0.5 g single dose of zoliflodacin in combination with doxycycline, and WHO X and SE600/18 were both eradicated by a 2 g single dose of zoliflodacin in combination with doxycycline; no zoliflodacin-resistant populations occurred during the 7-day experiment when using this zoliflodacin dose. When using suboptimal (0.5-1 g) zoliflodacin doses together with doxycycline, gonococcal mutants with increased zoliflodacin MICs, due to GyrB D429N and the novel GyrB T472P, emerged, but both the mutants had an impaired biofitness. The present study shows the high efficacy of zoliflodacin plus doxycycline combination therapy using a dynamic HFIM that more accurately and comprehensively simulate gonococcal infection and their treatment, i.e., compared to static in vitro models, such as short-time checkerboard experiments or time-kill curve analysis. Based on our dynamic in vitro HFIM work, zoliflodacin plus doxycycline for the treatment of both gonorrhea and chlamydia can be an effective combination.

3.
Front Pharmacol ; 13: 1035841, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452226

RESUMO

The emergence and spread of antimicrobial resistance in Neisseria gonorrhoeae is seriously threatening the treatment and control of gonorrhea globally. Novel treatment options are essential, coupled with appropriate methods to pharmacodynamically examine the efficacy and resistance emergence of these novel drugs. Herein, we used our dynamic in vitro hollow fiber infection model (HFIM) to evaluate protein-unbound lefamulin, a semisynthetic pleuromutilin, against N. gonorrhoeae. Dose-range and dose-fractionation experiments with N. gonorrhoeae reference strains: WHO F (susceptible to all relevant antimicrobials), WHO X (extensively drug-resistant, including ceftriaxone resistance), and WHO V (high-level azithromycin resistant, and highest gonococcal MIC of lefamulin (2 mg/l) reported), were performed to examine lefamulin gonococcal killing and resistance development during treatment. The dose-range experiments, simulating a single oral dose of lefamulin based on human plasma concentrations, indicated that ≥1.2 g, ≥2.8 g, and ≥9.6 g of lefamulin were required to eradicate WHO F, X, and V, respectively. Dose-fractionation experiments, based on human lefamulin plasma concentrations, showed that WHO X was eradicated with ≥2.8 g per day when administered as q12 h (1.4 g twice a day) and with ≥3.6 g per day when administered as q8 h (1.2 g thrice a day), both for 7 days. However, when simulating the treatment with 5-10 times higher concentrations of free lefamulin in relevant gonorrhea tissues (based on urogenital tissues in a rat model), 600 mg every 12 h for 5 days (approved oral treatment for community-acquired bacterial pneumonia) eradicated all strains, and no lefamulin resistance emerged in the successful treatment arms. In many arms failing single or multiple dose treatments for WHO X, lefamulin-resistant mutants (MIC = 2 mg/l), containing an A132V amino acid substitution in ribosomal protein L3, were selected. Nevertheless, these lefamulin-resistant mutants demonstrated an impaired biofitness. In conclusion, a clinical study is warranted to elucidate the clinical potential of lefamulin as a treatment option for uncomplicated gonorrhea (as well as several other bacterial STIs).

4.
Oncogene ; 24(8): 1359-74, 2005 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-15608684

RESUMO

Xeroderma pigmentosum (XP) and trichothiodystrophy (TTD) syndromes are characterized by deficiency in nucleotide excision repair pathway, but with distinguished clinical manifestations. While XP patients exhibit a high frequency of skin cancer, TTD patients are not cancer prone. The relation between lack of DNA repair and their clinical manifestations was investigated through analysis of the transcriptional profile of 12,600 transcripts in two isogenic cell lines with different capabilities of DNA repair. These cell lines result from a stable transfection of the XPB-TTD allele into XP complementation group B fibroblasts, from an XP patient who also have clinical abnormalities corresponding to Cockayne's syndrome (CS). The microarray assays performed under normal growth conditions showed the expression of distinct groups of genes in each cell line. The UVC-transcription modulation of these cells revealed the changes in 869 transcripts. Some of these transcripts had similar modulation pattern in both cells, although with eventually different time patterns for induction or repression. However, some different 'UVC signature' for each cell line was also found, that is, transcripts that were specifically UV regulated depending on the DNA repair status of the cell. These results provide a detailed portrait of expression profiles that may potentially unravel the causes of the different phenotypes of XP/CS and TTD patients.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Doenças do Cabelo/genética , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta , Xeroderma Pigmentoso/genética , Alelos , Linhagem Celular , Síndrome de Cockayne/complicações , DNA Helicases , Regulação para Baixo/efeitos da radiação , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Mutação/genética , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , Síndrome , Transfecção , Regulação para Cima/efeitos da radiação , Xeroderma Pigmentoso/complicações
5.
Mutat Res ; 544(2-3): 159-66, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14644317

RESUMO

One of the major critical factors for cancer proneness is the cell response to DNA damage. In this work, we used human DNA repair deficient cell lines to investigate the responses to ultraviolet irradiation that lead to apoptosis, and the influence of maintaining the cells resting in confluent state. UV-induced apoptosis is prevented in photolyase-proficient HeLa cells when cyclobutane pyrimidine dimers (CPDs) are removed by photorepair. At the same time, we show recovery of RNA synthesis, thus indicating that blockage of RNA transcription may trigger apoptosis in human cells. On the other hand, confluent primary XPC and trichothiodystrophy (TTD)/XPD cell lines, related to xeroderma pigmentosum and trichothiodystrophy repair syndromes, had a reduced and delayed apoptosis when compared to non-confluent cells. In contrast, XPA cells were similarly sensitive in both the confluent and non-confluent growing state. The effect of cellular confluence on UV-mediated apoptosis in CSB cells, related to Cockayne's syndrome, was unclear. Thus, these results indicate that the induction of apoptosis by UV light may also be affected by DNA replication. In addition, they argue for the use of confluent primary cells in studies of induction of apoptosis by UV, a condition close to skin cells in vivo.


Assuntos
Apoptose/efeitos da radiação , Divisão Celular/efeitos da radiação , Reparo do DNA/efeitos da radiação , Raios Ultravioleta , Células Cultivadas , Síndrome de Cockayne/genética , Dano ao DNA/efeitos da radiação , Fibroblastos/efeitos da radiação , Células HeLa , Humanos , Cinética , Pele/efeitos dos fármacos , Pele/patologia , Pele/efeitos da radiação , Transcrição Gênica/efeitos dos fármacos , Xeroderma Pigmentoso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA