Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 159: 111620, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940811

RESUMO

This study aimed to assess Spirulina platensis, Chlorella vulgaris, Scenedesmus quadricauda, and Lagerheimia longiseta microalgae potential as protective agents for probiotic cultures [(Lactobacillus acidophilus (La-05) and Lacticaseibacillus casei (Lc-01)] during freeze-drying, refrigeration storage (4 °C, 120 days), and in vitro simulated gastrointestinal conditions (SGIC). The occurrence of membrane damage and ultrastructural aspects of the cells were also verified. Fructooligosaccharides (FOS) were used as a positive control and saline solution as a negative control. The effects of the cryoprotectants on probiotic survival depended on the tested probiotic culture and microalgae biomass. For La-05, all tested cryoprotectants caused a lower reduction in probiotic counts during the freeze-drying and up to 90 days of storage. S. platensis kept higher probiotic counts during storage, while C. vulgaris protected the probiotic against the SGIC. L. longiseta decreased the probiotic membrane damage, mainly due to the production of exopolysaccharides, which was observed in the scanning electron microscopy (SEM). For Lc-01, all tested cryoprotectants promoted a lower reduction in probiotic counts up to 120 days of storage. FOS and S. quadricauda protected the probiotics during freeze-drying and refrigeration storage, while C. vulgaris protected the probiotic against the SGIC and caused lower membrane damage, mainly due to physical protection observed in SEM. In conclusion, microalgae biomasses exerted similar or better cryoprotectant effects on probiotics than FOS, a recognized cryoprotective agent.


Assuntos
Chlorella vulgaris , Lacticaseibacillus casei , Microalgas , Probióticos , Biomassa , Crioprotetores/farmacologia , Água Doce , Lactobacillus acidophilus , Probióticos/química
2.
Food Res Int ; 137: 109722, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233291

RESUMO

There is a need for searching new microalgae species, and the most suitable strategy to increase the cost-effectiveness of a microalgae culture system is to use resources of low costs, such as residues. This study aimed to evaluate the cultivation of microalgae isolated from the Brazilian Northeast region (Lagerheimia longiseta, Monoraphidium contortum, and Scenedesmus quadricauda) in an alternative medium of low cost (biocompost of discarded fruits and vegetables) with a view to possible applications in the food industry. Microalgae cultivated in the conventional synthetic medium was used as control. The cultivation of microalgae in the alternative medium allowed suitable cell growth, and improved the antioxidant activity and the levels of monounsaturated fatty acid and polyunsaturated fatty acid compared to the synthetic medium. The cultivation of S. quadricauda and L. longiseta species in the alternative medium resulted in increased protein content and/or total phenolic content, and improved health indices (lower levels of atherogenic, thrombogenic, and hypercholesterolemic saturated fatty acids indices, and higher levels of desired fatty acids index) compared to cultivation in synthetic medium. The cultivation of M. contortum in the alternative medium contributed to the production of higher lipid content, mainly saturated fatty acid (palmitic acid), which contributed negatively to the health indices. This study proved that S. quadricauda and L. longiseta microalga species from freshwaters have significant potential for distinct applications in functional food industries, and the biocompost of discarded fruits and vegetables is a suitable medium for microalgae cultivation.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Brasil , Frutas , Verduras
3.
Environ Sci Pollut Res Int ; 25(18): 17920-17926, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29680887

RESUMO

Shrimp farm effluents are one of the principal causes of eutrophication in coastal environments. Integrated processes of bioremediation involving the culturing of purifying organisms have been suggested, but very few studies have focused on microalgae. For that purpose evaluated the growth potential of Amphora sp. in the residual waters of shrimp farm activity fulfilled on the Paraíba State, Brazil. The experiments were performed using Conway medium as the control and wastewaters from shrimp farm at 100% concentrations. Amphora sp. demonstrated good growth in the shrimp farm effluents under test conditions, although less than that observed in the control medium. This diatom was found to removed 73.357 and 72.572% of PO4- and NO3-, respectively, demonstrating a high mitigation potential for this type of effluent. Comparisons of the physiological responses measured by flow cytometry demonstrated higher cell densities of Amphora sp. in the control medium, but a higher lipid content was observed in Amphora cultured in shrimp farm effluents.


Assuntos
Crustáceos/química , Diatomáceas/química , Microalgas/química , Águas Residuárias/análise , Animais , Biodegradação Ambiental , Brasil , Fenômenos Fisiológicos Celulares , Eutrofização , Fazendas , Nutrientes
4.
Bioresour Technol ; 221: 438-446, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27668876

RESUMO

The potential of four regional microalgae species was evaluated in relation to their cell growth and biomass production when cultured in the following alternative media: bio-composts of fruit/horticultural wastes (HB), sugarcane waste and vinasse (VB) chicken excrements (BCE), raw chicken manure (RCM), and municipal domestic sewage (MDS). The cultures were maintained under controlled conditions and their growth responses, productivities, biochemical compositions, and the ester profiles of their biomasses were compared to the results obtained in the synthetic media. The MDS and HB media demonstrated promising results for cultivation, especially of Chlorella sp., Chlamydomonas sp., and Lagerheimia longiseta, which demonstrated productivities superior to those seen when grown on the control media. The highest lipid levels were obtained with the HB medium. The data obtained demonstrated the viability of cultivating microalgae and producing biomass in alternative media prepared from MDS and HB effluents to produce biodiesel.


Assuntos
Biomassa , Ácidos Graxos/química , Resíduos Industriais , Microalgas/química , Esgotos/microbiologia , Biocombustíveis , Chlorella/crescimento & desenvolvimento , Lipídeos/biossíntese , Microalgas/crescimento & desenvolvimento , Saccharum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA