Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS One ; 15(11): e0242480, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33196686

RESUMO

In the current work we evaluated the anatomical changes induced by T. harzianum and T. asperellum in two soybean cultivars, BRSGO Caiaponia and NA 5909 RG. Soybean production represents a growing market worldwide, and new methods aimed at increasing its productivity and yield are constantly being sought. Fungi of the genus Trichoderma have been widely used in agriculture as a promising alternative for the promotion of plant growth and for biological control of various pathogens. It is known that Trichoderma spp. colonize plant roots, but the anatomical changes that this fungus can cause are still less studied. Experiment was conducted in a greenhouse to collect leaves and soybean roots to perform analysis of growth parameters, enzymatic activity of defense-related enzymes and anatomical changes. It was observed that inoculation of Trichoderma spp. caused anatomical alterations, among them, increase in stomatal index at the abaxial leaf surface, thickness of the root cortex, thickness of adaxial epidermis, mean diameter of the vascular cylinder, thickness of the mesophyll, and thickness of the spongy parenchyma of the soybean plants. These results indicate that the alterations in these factors may be related to the process of plant resistance to pathogens, and better performance against adverse conditions. This study demonstrates that the anatomical study of plants is an important tool to show the effects that are induced by biological control agents.


Assuntos
Glycine max/anatomia & histologia , Glycine max/crescimento & desenvolvimento , Trichoderma/patogenicidade , Agricultura , Nutrientes , Desenvolvimento Vegetal/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta , Raízes de Plantas/crescimento & desenvolvimento , Glycine max/parasitologia , Trichoderma/crescimento & desenvolvimento , Trichoderma/fisiologia
2.
Environ Sci Pollut Res Int ; 25(14): 13676-13686, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29502259

RESUMO

Agriculture accounts for ~ 70% of all water use and the world population is increasing annually; soon more people will need to be fed, while also using less water. The use of plant-associated bacteria (PAB) is an eco-friendly alternative that can increase crop water use efficiency. This work aimed to study the effect of some PAB on increasing soybean tolerance to drought stress, the mechanisms of the drought tolerance process, and the effect of the PAB on promoting plant growth and on the biocontrol of Sclerotinia sclerotiorum. PAB were isolated from soybean rhizosphere and S. sclerotiorum sclerotia. The strains identified as UFGS1 (Bacillus subtilis), UFGS2 (Bacillus thuringiensis), UFGRB2 and UFGRB3 (Bacillus cereus) were selected on their ability to grow in media with reduced water activity. Soybean plants were inoculated with the PAB and evaluated for growth promotion, physiological and molecular parameters, after drought stress. Under drought stress, UFGS2 and UFGRB2 sustained potential quantum efficiency of PSII (Fv/Fm), while a decrease was found in the control plants. Moreover, UFGS2 and UFGRB3 maintained the photosynthetic rates in non-stressed conditions compared to the control. UFGS2-treated plants showed a higher stomatal conductance and higher transpiration than the control, after drought stress. Some PAB-treated plants also had other beneficial phenotypes, such as increases in fresh and dried biomass relative to the control. Differential gene expression analysis of genes involved in plant stress pathways shows changes in expression in PAB-treated plants. Results from this study suggest that PAB can mitigate drought stress in soybean and may improve water efficiency under certain conditions.


Assuntos
Bactérias/metabolismo , Glycine max/metabolismo , Fotossíntese/fisiologia , Bactérias/química , Biomassa , Secas , Desenvolvimento Vegetal , Rizosfera , Glycine max/química , Água/química , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA