Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 175: 113740, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128992

RESUMO

The consumption of diets high in saturated fat can induce damages in liver morphology and function, which leads to increased inflammation, oxidative stress, and hepatic steatosis. Chia seed (Salvia hispanica L.) is rich in protein, which provides bioactive peptides with potential benefits, including antioxidant and anti-inflammatory functions. Then, this study aimed to analyze the effect of digested total protein (DTP) of chia on inflammation, oxidative stress, and morphological changes in liver of C57BL/6 mice fed a diet rich in saturated fat. Male C57BL/6 mice (n = 8/group), 8 weeks old, were fed standard diet (AIN), high-fat diet (HF), standard diet added digested protein (AIN + DTP) or high-fat diet added digested protein (HF + DTP) for 8 weeks. In animals fed a high-fat diet, chia DTP was able to reduce weight gain, food efficiency ratio and hepatosomatic index. In addition, it presented antioxidant capacity, which reduced catalase activity and lipid peroxidation. DTP was also able to reduce hepatic inflammation by reducing p65-NFκB expression and IL-1ß expression and quantification. The APSPPVLGPP peptide present in chia DTP presented binding capacity with PPAR-α, which contributed to the reduction of hepatic fat accumulation evidenced by histological analysis. Thus, chia DTP improved hepatic inflammatory and histological parameters, being an effective food in reducing the liver damage caused by a high-fat diet.


Assuntos
Antioxidantes , Dieta Hiperlipídica , Animais , Masculino , Camundongos , Antioxidantes/farmacologia , Ácidos Graxos , Inflamação , Camundongos Endogâmicos C57BL , Peptídeos
2.
Food Res Int ; 175: 113684, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129028

RESUMO

The demand for organic vegetables is increasing worldwide, which has led to the growth of organic agriculture. However, information on chemical composition and antioxidant activity in vegetables grown organically under controlled conditions remains uncertain. For this study, 3 vegetables widely consumed in Brazil were cultivated in controlled organic and conventional cultivation systems: lettuce, coriander and tomato. Their chemical composition, mineral concentration, phenolic compound content, flavonoids and antioxidant activity (AA) were evaluated. The analyses of chemical and mineral composition revealed differences between the cultivation systems. Organic lettuce presented higher content of ashes, calcium and potassium. A higher content of phenolic compounds and flavonoids was observed in most organic vegetables. Using the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay, the organic tomato exhibited higher AA compared to conventional, while the ferric-reducing antioxidant power (FRAP) method showed higher AA for organic coriander and tomato than theirs conventional version. The correlation between bioactive compounds and AA was positive, higher and stronger for organic vegetables, considering phenolic compounds (including flavonoids) and DPPH or FRAP antioxidant activity. Principal Component Analysis (PCA) disclosed that organic lettuce and coriander were grouped according bioactive components. In general, organic vegetables showed better results for bioactive compounds and antioxidant activity.


Assuntos
Antioxidantes , Flavonoides , Antioxidantes/análise , Flavonoides/análise , Verduras/química , Fenóis/análise , Minerais
3.
Food Res Int ; 172: 113095, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689868

RESUMO

A diet rich in sugar and fat can promote metabolic disorders development, especially in the intestine. Chia flour (Salvia hispanica. L) is a source of dietary fiber, alpha-linolenic fatty acid (ALA), bioactive peptides, and phenolics, promoting health benefits. This study aimed to analyze chia flour's effect on gut microbiota modulation and intestinal health in adult male Wistar rats fed a high-fat and high-fructose (HFHF) diet. Male Wistar rats (n = 10/group) were fed the diets standard (AIN-93M) or HFHF (31% saturated fat and 20% fructose) in the first phase to induce metabolic disorders. In the second phase, the rats were fed AIN-93M, HFHF, or HFHF plus 14.7% chia flour (HFHF + CF) for 10 weeks. The consumption of chia flour increased the ALA (3.24 ± 0.24) intake and significantly improved immunoglobulin A (IgA) levels (1126.00 ± 145.90), goblet cells number (24.57 ± 2.76), crypt thickness (34.37 ± 5.86), crypt depth (215.30 ± 23.19), the longitudinal muscle layer (48.11 ± 5.04), cecum weight (4.39 ± 0.71), Shannon index (p < 0.05), and significantly increased the production of acetic (20.56 ± 4.10) and butyric acids (5.96 ± 1.50), Monoglobus sp., Lachnospiraceae sp., and Prevotellaceae sp. abundance. Furthermore, chia significantly reduced the cecal pH content (7.54 ± 1.17), body mass index (0.62 ± 0.03) and weight (411.00 ± 28.58), and Simpson index (p < 0.05). Therefore, chia intake improved intestinal health parameters and functionality in rats with metabolic disorders, which demonstrates to be an effective strategy for gut microbiota modulation.


Assuntos
Farinha , Microbioma Gastrointestinal , Masculino , Ratos , Animais , Ratos Wistar , Frutose , Salvia hispanica , Dieta
4.
Nutrients ; 15(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37630833

RESUMO

Phenolic compounds can act as a substrate for colonic resident microbiota. Once the metabolites are absorbed and distributed throughout the body, they can have diverse effects on the gut. The objective of this study was to evaluate the effects of the intra-amniotic administration of a chia phenolic extract on intestinal inflammation, intestinal barrier, brush border membrane functionality, intestinal microbiota, and morphology in vivo (Gallus gallus model). Cornish-cross fertile broiler eggs, at 17 days of embryonic incubation, were separated into groups as follows: non-injected (NI; this group did not receive an injection); 18 MΩ H2O (H2O; injected with ultrapure water), and 10 mg/mL (1%) chia phenolic extract (CPE; injected with phenolic extract diluted in ultrapure water). Immediately after hatch (21 days), chickens were euthanized and their small intestine, cecum, and cecum content were collected and analyzed. The chia phenolic extract reduced the tumor necrosis factor-alpha (TNF-α) and increased the sucrose isomaltase (SI) gene expression, reduced the Bifidobacterium and E. coli populations, reduced the Paneth cell diameter, increased depth crypt, and maintained villus height compared to the non-injected control group. Chia phenolic extract may be a promising beneficial compound for improving intestinal health, demonstrating positive changes in intestinal inflammation, functionality, microbiota, and morphology.


Assuntos
Galinhas , Escherichia coli , Animais , Bifidobacterium , Biomarcadores , Inflamação/tratamento farmacológico
5.
Food Funct ; 14(16): 7457-7468, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37486027

RESUMO

Chia is a functional food because of its positive impact on reducing the risk of metabolic diseases. These benefits are due to its nutritional composition as a source of dietary fiber and bioactive compounds. In our previous study, chia consumption increased the richness of the microbiota and the production of short chain fatty acids (SCFAs) when consumed by male Wistar rats, so, the objective of this study was to assess the effects of the consumption of chia with a high fat diet on gut health in female Wistar rats. 32 adult female Wistar rats were allocated into four groups and received one of the following diets: standard diet (SD), standard diet + chia (SDC), high fat diet (HFD) or high fat diet + chia (HFDC) for 8 weeks. At the end of the study, the intestinal microbiota, SCFA content, cecum content pH, immunoglobulin A (IgA) quantification and brush border membrane functionality were evaluated. There was no difference in the relative abundance of the gut microbiota, but chia consumption increased the microbial richness and diversity, increased the production of acetic and butyric acids in the SDC group and propionic acid in the HFD group, and decreased the pH of cecal content. The HFDC group demonstrated a lower IgA concentration compared to the HFD group. The SDC group increased SI and AP gene expression and decreased SGLT1 and PepT1 compared to the SD group. The consumption of chia can be beneficial for the functionality of the microbiota, improving SCFAs and intestinal pH, and the effects of chia in the microbiota can be more pronounced in HFD.


Assuntos
Dieta Hiperlipídica , Propionatos , Animais , Feminino , Masculino , Ratos , Ácidos Graxos Voláteis/metabolismo , Farinha , Fígado/metabolismo , Propionatos/metabolismo , Ratos Wistar
6.
Food Funct ; 14(12): 5678-5689, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37272597

RESUMO

Millet is a promising cereal with high amounts of dietary fibre and protein, and in addition, bioactive compounds with health-promoting functional properties. This study aimed to evaluate the effect of germinated and cooked whole millet flour (Pennisetum glaucum (L.) R. Br.) on protein quality, biochemical profile and intestinal health in vivo. Thirty-two male Wistar rats (21 days old) were separated into four groups, which received a casein control diet (CC; n = 8), a free protein diet (aproteic; n = 8) and two treatment diets: non-germinated millet (NM; n = 8) and germinated millet (GM; n = 8) for 29 days. The whole millet flours presented an adequate essential amino acid profile, except for lysine. The GM group presented a higher protein efficiency ratio and net protein ratio compared to the NM group. Weight gain, Lee index, and food efficiency ratio were lower in the treatment groups, compared to the control group. The GM group had lower plasma glucose, uric acid, cholesterol, and faecal pH compared to the other groups. The treatment groups presented lower triglyceride levels, higher levels of acetic and propionic acids, a larger thickness and depth of the colonic crypts, and a higher expression of PepT1 genes than the CC group. In conclusion, the millet flours demonstrated potential for controlling the lipid profile and biometric measurements. Additionally, the whole germinated millet flour provided better protein quality and improved intestinal morphology and functionality. These results indicate that the consumption of millet could be increased in human food, and considering its potential health benefits, it could be an alternative for dietary diversification, and germination is a good processing option.


Assuntos
Farinha , Pennisetum , Masculino , Humanos , Ratos , Animais , Farinha/análise , Pennisetum/química , Milhetes , Ratos Wistar , Culinária , Proteínas
7.
Nutrients ; 15(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242261

RESUMO

Cashew nuts are rich in dietary fibers, monounsaturated fatty acids, carotenoids, tocopherols, flavonoids, catechins, amino acids, and minerals that offer benefits for health. However, the knowledge of its effect on gut health is lacking. In this way, cashew nut soluble extract (CNSE) was assessed in vivo via intra-amniotic administration in intestinal brush border membrane (BBM) morphology, functionality, and gut microbiota. Four groups were evaluated: (1) no injection (control); (2) H2O injection (control); (3) 10 mg/mL CNSE (1%); and (4) 50 mg/mL CNSE (5%). Results related to CNSE on duodenal morphological parameters showed higher Paneth cell numbers, goblet cell (GC) diameter in crypt and villi, depth crypt, mixed GC per villi, and villi surface area. Further, it decreased GC number and acid and neutral GC. In the gut microbiota, treatment with CNSE showed a lower abundance of Bifidobacterium, Lactobacillus, and E. coli. Further, in intestinal functionality, CNSE upregulated aminopeptidase (AP) gene expression at 5% compared to 1% CNSE. In conclusion, CNSE had beneficial effects on gut health by improving duodenal BBM functionality, as it upregulated AP gene expression, and by modifying morphological parameters ameliorating digestive and absorptive capacity. For intestinal microbiota, higher concentrations of CNSE or long-term intervention may be necessary.


Assuntos
Anacardium , Galinhas , Animais , Anacardium/química , Nozes/química , Escherichia coli , Extratos Vegetais/farmacologia , Extratos Vegetais/análise
8.
Nutrients ; 15(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111052

RESUMO

As a protein source, chia contains high concentrations of bioactive peptides. Probiotics support a healthy digestive tract and immune system. Our study evaluated the effects of the intra-amniotic administration of the hydrolyzed chia protein and the probiotic Lacticaseibacillus paracasei on intestinal bacterial populations, the intestinal barrier, the inflammatory response, and brush border membrane functionality in ovo (Gallus gallus). Fertile broiler (Gallus gallus) eggs (n = 9/group) were divided into 5 groups: (NI) non-injected; (H2O) 18 MΩ H2O; (CP) 10 mg/mL hydrolyzed chia protein; (CPP) 10 mg/mL hydrolyzed chia protein + 106 colony-forming unit (CFU) L. paracasei; (P) 106 CFU L. paracasei. The intra-amniotic administration was performed on day 17 of incubation. At hatching (day 21), the animals were euthanized, and the duodenum and cecum content were collected. The probiotic downregulated the gene expression of NF-κß, increased Lactobacillus and E. coli, and reduced Clostridium populations. The hydrolyzed chia protein downregulated the gene expression of TNF-α, increased OCLN, MUC2, and aminopeptidase, reduced Bifidobacterium, and increased Lactobacillus. The three experimental groups improved in terms of intestinal morphology. The current results suggest that the intra-amniotic administration of the hydrolyzed chia protein or a probiotic promoted positive changes in terms of the intestinal inflammation, barrier, and morphology, improving intestinal health.


Assuntos
Lacticaseibacillus paracasei , Salvia , Animais , Galinhas , Lacticaseibacillus , Salvia hispanica , Escherichia coli , Hidrolisados de Proteína/farmacologia , Lactobacillus , Salvia/química
9.
Food Funct ; 14(1): 550, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36519574

RESUMO

Correction for 'Macauba (Acrocomia aculeata) kernel has good protein quality and improves the lipid profile and short chain fatty acids content in Wistar rats' by Fátima Ladeira Mendes Duarte et al., Food Funct., 2022, 13, 11342-11352, https://doi.org/10.1039/D2FO02047E.

10.
Eur J Nutr ; 62(2): 905-919, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36326862

RESUMO

PURPOSE: The present study aimed to evaluate the effect of chia flour associated with a high fat diet on intestinal health in female ovariectomized Wistar rats. METHODS: The study was conducted with 32 adult female ovariectomized Wistar rats, which were separated into four groups: standard diet (ST), standard diet with chia (STC), high fat diet (HF) and high fat diet with chia (HFC) for 18 weeks. Cecum content pH, short chain fatty acid content, brush border membrane functionality and morphology and the gut microbiota were evaluated. RESULTS: This study demonstrated that the consumption of chia flour increased the production of acetic and butyric acids, the longitudinal and circular muscle layers and crypt thickness. It also improved the expression of aminopeptidase (AP) and sucrose-isomaltase (SI) and decreased the cecum content pH. Further, the consumption of chia improved richness and decreased diversity of the microbiota. Operational Taxonomic Units (OTUs) clustering indicated difference between the ST and STC groups. In the linear discriminant analysis effect size (LEfSe) analysis, the Bacteroides genus and members of the Muribaculaceae and Lachnospiraceae families were enriched in the STC treatment group. The STC group demonstrated the enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways related to peptidoglycan and coenzyme A biosynthesis. CONCLUSION: Our results suggest that chia flour, which is rich in dietary fiber and phenolic compounds, presented potential properties to improve intestinal health.


Assuntos
Dieta Hiperlipídica , Farinha , Ratos , Feminino , Animais , Ratos Wistar , Farinha/análise , Intestinos , Ácidos Graxos Voláteis , Sementes
11.
Eur J Nutr ; 62(2): 647-657, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36181539

RESUMO

AIM: The present study aimed to investigate the effect of dry heated whole sorghum BRS 305 hybrid flour on the gut microbiota modulation and gut health of rats fed with a high-fat high-fructose diet (HFHF). METHODS: In phase I (8 weeks), 45-50 days, male Wistar rats, were separated into the AIN93-M group (n = 10; fed with normal diet) and HFHF group (n = 20; fed with diet rich in saturated and simple carbohydrate). In phase II (10 weeks), we maintained the AIN-93-M group, and the HFHF group was divided into the HFHF group (n = 10) and HFHF plus sorghum flour group (n = 10). RESULTS: The consumption of sorghum flour increased the circular muscle layer and propionic acid when compared to the HFHF group. The sequencing of the 16S rRNA gene of the cecal microbiota presented no changes in the α-diversity and ß-diversity between. However, the sorghum group exhibited higher relative abundance of Firmicutes and higher Firmicutes/Bacteroidetes ratio compared to the other experimental groups, and lower abundance of Bacteroidetes, compared to the HFHF group. Despite, sorghum increased the abundance of the genera Roseburia and Lachnospiraceae_NK4A136_group compared to the HFHF group. No differences were observed in total goblet cell number, crypt thickness and height, circular muscle layer, secretory IgA, and butyric acid between all groups. CONCLUSIONS: The consumption of sorghum flour can modulate the gut microbiota composition, abundance of SCFA-producing bacteria, and intestinal morphology even with consumption of an HFHF diet.


Assuntos
Microbioma Gastrointestinal , Sorghum , Ratos , Masculino , Animais , Ratos Wistar , Farinha , Frutose , RNA Ribossômico 16S , Dieta Hiperlipídica , Grão Comestível
12.
Nutrients ; 14(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432610

RESUMO

A direct correlation has been reported between excessive fat intake and the development and progression of various enteropathies. Plant foods may contain bioactive compounds and non-digestible dietary fiber, with potential to improve intestinal health. Chia is a good source of dietary fiber and bioactive compounds. Our study evaluated the role of chia flour associated with a high-fat diet (HFD) on colon histomorphometry, intestinal functionality and intestinal microbiome composition and function in Wistar rats. The study used 32 young male rats separated into four groups to receive a standard diet (SD) or HFD, with or without chia, for 35 days. At the end of the study, the cecum, cecal content and duodenum were collected. The consumption of chia increased the production of short-chain fatty acids and improved fecal moisture. Chia consumption improved the circular muscle layer in the SD group. The diversity and abundance of intestinal bacteria were not affected, but increased richness was observed in the microbiome of the SD+chia group. Moreover, chia consumption decreased the expression of proteins involved in intestinal functionality. Chia consumption improved intestinal morphology and functionality in young Wistar rats but was insufficient to promote significant changes in the intestinal microbiome in a short term of 35 days.


Assuntos
Dieta Hiperlipídica , Salvia , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Ratos Wistar , Salvia hispanica , Sementes/química , Fibras na Dieta/farmacologia , Fibras na Dieta/análise
13.
Artigo em Inglês | MEDLINE | ID: mdl-36429936

RESUMO

Germinated millet (Pennisetum glaucum (L.) R. Br.) is a source of phenolic compounds that has potential prebiotic action. This study aims at evaluating the action of germinated pearl millet on gut function and its microbiota composition in Wistar rats fed with a high-fat high-fructose (HFHF) diet. In the first stage, lasting eight weeks, the experiment consisted of two groups: AIN-93M (n = 10) and HFHF group (n = 20). In the second stage, which lasted ten weeks, the animals of the AIN-93M group (n = 10) were kept, while the HFHF group was dismembered into HFHF (HFHF diet, n = 10) and HFHF + millet (HFHF added 28.6% of germinated millet flour, n = 10) groups. After the 18th week, the urine of the animals was collected for the analysis of lactulose and mannitol intestinal permeability by urinary excretion. The histomorphometry was analyzed on the proximal colon and the fecal pH, concentration of short-chain fatty acids (SCFA), and sequencing of microbiota were performed in cecum content. The Mothur v.1.44.3 software was used for data analysis of sequencing. Alpha diversity was estimated by Chao1, Shannon, and Simpson indexes. Beta diversity was assessed by PCoA (Principal Coordinate Analysis). The functional predictive analysis was performed with PICRUSt2 software (version 2.1.2-b). Functional traits attributed to normalized OTU abundance were determined by the Kyoto Encyclopedia of Genes and Genomes (KEGG). In the results, germinated millet flour reduced Oscillibacter genus and Desulfobacterota phylum, while increasing the Eggerthellaceae family. Furthermore, germinated millet flour: increased beta diversity, cecum weight, and cecum/body weight ratio; improved gut histological parameters by increasing the depth and thickness of the crypt and the goblet cell count (p < 0.05); reduced (p < 0.05) the fecal pH and mannitol urinary excretion; increased (p < 0.05) the propionate short-chain fatty acid concentration. Thus, germinated millet has the potential to improve the composition of gut microbiota and the intestinal function of rats fed with an HFHF diet.


Assuntos
Microbioma Gastrointestinal , Pennisetum , Ratos , Animais , Farinha/análise , Milhetes , Frutose , Ratos Wistar , Dieta Hiperlipídica , Ácidos Graxos Voláteis , Grão Comestível/química , Manitol/análise
14.
Food Funct ; 13(21): 11342-11352, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36254703

RESUMO

Macauba (Acrocomia aculeata) has aroused interest in the food industry due to the high nutritional value of its fruits. This study aimed to evaluate the protein quality and influence on biochemical markers, short chain fatty acids content, intestinal morphology, and intestinal functionality in Wistar rats of macauba kernel. Male young rats were divided into three groups (n = 8) that received a control diet (casein), and two test diets (M30: 30% semi-defatted macauba kernel flour or M50: 50% semi-defatted macauba kernel flour) for 29 days. Protein Efficiency Ratio (PER), Net Protein Ratio (NPR), True Digestibility (TD), biochemical, and intestinal morphology and functionality markers were evaluated. The PER and NPR values were lower in test groups compared to the control group. TD did not differ between M30 and M50. The animals that were fed the macauba kernel flour had lower concentrations of total cholesterol and triglycerides compared to the control group. The concentration of acetic and propionic acids was higher and the fecal pH was lower in M30 and M50 groups compared to the control group. Gene expression of aminopeptidase (AP) and sodium-glucose transport protein 1 (SGLT1) did not differ among the groups, and the M50 group had lower expression of peptide transporter 1 (PepT1) and sucrase isomaltase (SI) than the control group. Crypts thickness was higher in the M50 group compared to the other groups, while the intestinal muscle layer width did not differ among groups. Therefore, macauba kernel flour proved to be a good plant protein alternative, and its consumption reduced blood lipids and increased short chain fatty acids content.


Assuntos
Arecaceae , Ratos , Animais , Ratos Wistar , Arecaceae/química , Farinha , Ácidos Graxos Voláteis/metabolismo , Lipídeos , Ácidos Graxos/metabolismo
15.
Food Funct ; 12(14): 6157-6166, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34079965

RESUMO

The intra-amniotic administration approach has been used to evaluate the effects of plant origin prebiotics on intestinal health and on brush border membrane functionality and morphology. Prebiotics are fermentable dietary fibers, which can positively affect the host by selectively stimulating the growth and activity of colon bacteria, thus improving intestinal health. The consumption of prebiotics increases digestive tract motility, which leads to hyperplasia and/or hypertrophy of intestinal cells, increasing nutrient digestive and absorptive surface area. This review collates information about the effects and relationship between prebiotic consumption on small intestinal brush border membrane functionality and morphology by utilizing the intra-amniotic administration approach. To date, research has shown that the intra-amniotic administration of prebiotics affects the expression of key brush border membrane functional proteins, intestinal surface area (villi height/width), and goblet cell number/size. These effects may improve brush border membrane functionality and digestive/absorptive capabilities.


Assuntos
Galinhas , Mucosa Intestinal/efeitos dos fármacos , Microvilosidades/efeitos dos fármacos , Extratos Vegetais/farmacologia , Prebióticos/administração & dosagem , Animais , Colo/microbiologia , Fibras na Dieta/administração & dosagem , Digestão , Duodeno/metabolismo , Duodeno/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Absorção Intestinal , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Microvilosidades/metabolismo
16.
Food Funct ; 12(7): 3069-3082, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33720242

RESUMO

The reduction in estrogen levels is associated with the increased risk factors for cardiovascular disease development. The present study aimed to evaluate the effect of chia consumption in a standard diet (SD) or high fat diet (HFD) on ovariectomized (OVX) and non-ovariectomized (SHAM) rats, in relation to biometric measurements, oxidative stress, mineral content and ATPase enzymes in the heart. The study was conducted with 80 female Wistar rats, which received a SD or HFD for 18 weeks. During the first 7 weeks, the animals received the SD or HFD. Then, 40 rats were ovariectomized and 40 rats were SHAM operated. After recovery from surgery, the animals were allocated to 8 groups (n = 10) and they received one of the following diets for 8 weeks: SD, SD + chia, HFD and HFD + chia. In the OVX group, HFD increased weight gain, adiposity, cardiac hypertrophy, and nitric oxide (NO) and K concentration and decreased the Na+/K+ATPase activity. In combination with HFD, ovariectomy decreased the catalase activity, Mg, Cu and Zn concentration, total ATPase activity, and Na+/K+ATPase and Mg2 + ATPase activities; this group also presented higher NO, Ca, K, Fe and Mn concentration in the heart. The SHAM group fed chia presented a lower fat content in the heart. In the OVX group fed HFD, chia increased the activity of superoxide dismutase, decreased NO and maintained the content of minerals and ATPase enzymes. Thus, chia improved the biometric parameters of the heart, the antioxidant activity and maintained the content of minerals and ATPase enzymes, showing a cardioprotective action, but without reversing the deleterious effects of ovariectomy.


Assuntos
Cardiotônicos/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Extratos Vegetais/uso terapêutico , Salvia , Animais , Cardiotônicos/administração & dosagem , Cardiotônicos/farmacologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Obesidade , Ovariectomia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
17.
J Am Coll Nutr ; 40(5): 454-464, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32729778

RESUMO

BACKGROUND: Skeletal abnormalities such as bone loss occur when there is an imbalance in bone matrix synthesis and bone resorption. This imbalance is also caused by hormonal changes and inflammation. Chia (Salvia hispanica L.) has a high nutritional value and is an excellent source of calcium. Evaluate the bioavailability of calcium from chia, and its effect on bone metabolism when consumed as part of a standard or high fat diet (HFD) in ovariectomized rats. METHODS: The study was conducted with 80 female Wistar rats that received standard diet or HFD. 40 female mice were ovariectomized (OVX) and 40 were sham-operated (SHAM). After recovery from surgery the animals received chia as a source of 20% of the calcium recommendation, calcium bioavailability was measured using the calcium balance technique. Bone strength and bone morphometry were evaluated by weight, length and microtomography measurements. RESULTS: HFD increased serum calcium and decreased calcium retention. The addition of chia to HFD did not alter bone morphology. Ovariectomy led to lower percentage of bone volume, smaller trabecular thickness, higher trabecular separation and higher porosity, when ovariectomy was associated with HFD, the final weight, waist circumference, body mass index and adiposity were increased. CONCLUSIONS: Chia maintained bone health when offered as a source of 20% calcium, in a diet that met 100% of the mineral recommendation, regardless of the type of diet, in animals non-ovariectomized adults.


Assuntos
Disponibilidade Biológica , Cálcio/metabolismo , Salvia , Animais , Densidade Óssea , Dieta Hiperlipídica/efeitos adversos , Feminino , Ovariectomia , Ratos , Ratos Wistar , Salvia/química
18.
J Food Biochem ; 43(7): e12903, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31353695

RESUMO

OBJECTIVES: The objective of this study was to investigate the influence of ora-pro-nobis (Pereskia aculeata Mill.) flour on the adhesion of probiotics to intestinal epithelial cells and to evaluate the effect of a product based on this flour on gastrointestinal symptoms, weight, body fat, glycemia, and lipid profile in overweight men. METHODS: Microbiological counts (probiotic count, survival after in vitro gastrointestinal resistance, Caco-2 cell adhesion) were analyzed. A randomized, cross-over intervention was performed. Intestinal microbiota was indirectly assessed on the basis of consistency, color of feces, and gastrointestinal symptoms. RESULTS: P. aculeata did not affect Lactobacillus casei adhesion to Caco-2 cells. Ora-pro-nobis flour improved gastrointestinal symptoms and increased satiety. CONCLUSION: The consumption of ora-pro-nobis flour improved intestinal health. In addition, it maintained the high adherence of L. casei to intestinal cells as well as patient anthropometric and biochemical parameters. PRACTICAL APPLICATIONS: Pereskia aculeata Mill. is well known in folk medicine and has several nutrients; however, there are few studies on this plant. This is the first study to analyze the influence of P. aculeata on bacterial adherence and the first cross-over clinical trial to evaluate the beneficial potential of ora-pro-nobis flour in overweight men. Thus, this study will contribute to the promotion of ora-pro-nobis as a functional ingredient and will arouse the interest of industries to develop related healthy foods. In addition, it is an effective dietary strategy to improve the gastrointestinal health of men.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Cactaceae/química , Lacticaseibacillus casei/fisiologia , Lipídeos/análise , Medicina Tradicional , Sobrepeso/tratamento farmacológico , Probióticos/farmacologia , Tecido Adiposo/efeitos dos fármacos , Adulto , Peso Corporal/efeitos dos fármacos , Células CACO-2 , Estudos Cross-Over , Fibras na Dieta/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Farinha , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/fisiologia , Humanos , Lacticaseibacillus casei/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Folhas de Planta/química , Adulto Jovem
19.
Food Funct ; 10(8): 4861-4867, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31334539

RESUMO

This study investigates the acute anti-inflammatory activity of Mangifera indica L. leaf extract and mangiferin in the liver of rats fed a cafeteria diet. This study was a randomized longitudinal experimental study. The animals were divided into three groups - Control: cafeteria diet (CD); Extract: CD + leaf extract (250 mg kg-1); and Mangiferin: CD + mangiferin (40 mg kg-1). Body weight and food intake were measured every week. On day eight, mRNA and protein expression of inflammatory markers were evaluated in the liver. Also, liver weight, SOD activity and malondialdehyde concentration were measured. Treatment for only eight days with mango leaf extract and mangiferin increased SOD activity. Mangiferin intake increased the mRNA expression of PPAR-α and HSP72. The leaf extract treatment enhanced PPAR-α mRNA expression. Mangiferin and leaf extract consumption caused a lower concentration of NFκB (p65) in nuclear extracts, and greater IL-10 mRNA and protein levels. This study highlights the potential of acute treatment with mango leaf extract and mangiferin to prevent liver inflammation caused by fat-rich diets. These results indicate a new use for a product that has low cost, is found in great amounts, and is not routinely used.


Assuntos
Anti-Inflamatórios/administração & dosagem , Hepatopatias/tratamento farmacológico , Mangifera/química , Extratos Vegetais/administração & dosagem , Animais , Dieta Hiperlipídica/efeitos adversos , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Hepatopatias/etiologia , Hepatopatias/genética , Hepatopatias/imunologia , Masculino , Malondialdeído/imunologia , PPAR alfa/genética , PPAR alfa/imunologia , Fitoterapia , Folhas de Planta/química , Ratos
20.
Food Res Int ; 122: 330-339, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31229086

RESUMO

Common bean (Phaseolus vulgaris L.) is a source of bioactive peptides, but little is known about its effects on hypercholesterolemia, oxidative stress, and the inflammatory process. Therefore, the aim of this study was to evaluate the effect of whole flour and bean protein hydrolysate of common bean variety Carioca on inflammation and oxidative stress in BALB/c mice. Four experimental groups were included in the study: standard diet (SD), high fat high cholesterol diet (HFC), high fat high cholesterol diet and whole bean flour (HFC-F); and high fat high cholesterol diet and bean protein hydrolysate (HFC-PH). Animals fed with bean protein hydrolysate showed lower weight gain and food intake. Animals fed with whole bean flour showed lower alanine aminotransferase and low-density lipoprotein cholesterol levels than animals fed with bean protein hydrolysate. SOD mRNA was lower in HFC, HFC-F and HFC-PH groups whereas SOD concentration was higher in HFC-F and HFC-PH groups. HSP72 mRNA expression was lower in the HFC-F group in relation to HFC-PH. IL-10 and PPARα mRNA expression was lower in HFC-F and HFC-PH groups in comparison with SD. The whole bean flour and bean protein hydrolysate reduced inflammation and the risk factors for cardiovascular diseases in BALB/c mice.


Assuntos
Anti-Inflamatórios/farmacologia , Dieta Hiperlipídica , Farinha , Phaseolus/química , Hidrolisados de Proteína/farmacologia , Animais , Anti-Inflamatórios/química , Hiperlipidemias/metabolismo , Inflamação/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Hidrolisados de Proteína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA