Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol Rep ; 2: 100009, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36420495

RESUMO

Aquaculture production has increased in the last decades, with crustacean production contributing with 9.8% of the total production. However, fisheries and aquaculture sectors present several challenges, such as fish stocks fished beyond biological sustainability, animal diseases, biosecurity, and environmental impact. It is important to improve shrimp production with healthy animals, avoiding environmental impacts, e.g. with the use of heterotrophic rearing system. It is known that the heterotrophic system can stimulate the activation of immune genes, but how it affects the shrimp immune system is unknown. To assess if a heterotrophic system influences the cellular immune response in shrimp, Litopenaeus vannamei shrimp were reared in heterotrophic and clear water systems. Cellular immune response parameters such as total and differential hemocyte counts, phagocytosis indices and the production of the superoxide anion were evaluated after 60, 120 and 180 days. After 60 days, total haemocyte counts were higher in shrimps reared in the clear water system, while after 120 days it was higher in shrimps reared in the heterotrophic system. No significant difference was observed after 180 days. Hyaline, granular and semi-granular cells showed similar behavior, peaking after 120 days in the heterotrophic system. By the 60th day, phagocytic capacity was higher in the heterotrophic system, while no differences were found for the 120th and 180th day. No differences were detected concerning the phagocytic index or superoxide anion production. The heterotrophic system can affect total and differential shrimp haemocyte counts and phagocytic capacity, depending on the period of time they were maintained in this system. However, the phagocytic index and superoxide anion production are not affected by the heterotrophic system at the time points evaluated herein.

2.
Microsc Microanal ; 22(6): 1162-1169, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27998365

RESUMO

The effect of heavy metal in fish has been the focus of extensive research for many years. However, the combined effect of heavy metals and nanomaterials is still a new subject that needs to be studied. The aim of this study was to examine histopathologic alterations in the gills of Nile tilapia (Oreochromis niloticus) to determine possible effects of lead (Pb), carbon nanotubes, and Pb+carbon nanotubes on their histological integrity, and if this biological system can be used as a tool for evaluating water quality in monitoring programs. For this, tilapia were exposed to Pb, carbon nanotubes and Pb+carbon nanotubes for 4 days. The main alterations observed were epithelial structure, hyperplasia and displacement of epithelial cells, and alterations of the structure and occurrence of aneurysms in the secondary lamella. The most severe alterations were related to the Pb+carbon nanotubes. We conclude that the oxidized multi-walled carbon nanotubes enhanced the acute lead toxicity in Nile tilapias. This work draws attention to the implications of carbon nanomaterials released in the aquatic environment and their interaction with classical pollutants.


Assuntos
Ciclídeos , Brânquias/efeitos dos fármacos , Chumbo/toxicidade , Nanotubos de Carbono/toxicidade , Animais , Exposição Ambiental , Poluentes Químicos da Água/toxicidade
3.
Chemosphere ; 144: 540-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26397471

RESUMO

The effects of halogen-light-irradiated and non-irradiated PAHs on the grouper Epinephelus marginatus were assessed through biomarkers including morphometric parameters, liver histopathology, biliary PAH concentration, genetic alterations, and enzyme activity modulation. E. marginatus juveniles were divided into three groups: control (C), non-irradiated PAHs (PAHs1), and irradiated PAHs (PAHs2). Test groups were exposed for 14 days to a 0.5 ppm PAH solution in the semi-static system. After this period, fish were anesthetized with benzocaine (2%) and peripheric blood was collected by caudal puncture. Blood smears were prepared and stained with propidium iodide. Fish livers were collected, fixed in McDowell's solution, embedded in paraplast, thin-sectioned, and stained with hematoxylin-eosin (H&E). For biochemical analyses including superoxide dismutase, catalase, and glutathione S-transferase activities, fish livers were collected and preserved in liquid nitrogen. Water samples were analyzed using gas chromatography-mass spectrometry (GC-MS) and bile synchronous fluorescence spectroscopy. Fish in the PAHs2 group had micronuclei (MN) in blood cells, as well as significant differences in nuclear morphology (NMA). Significant morphological alterations were observed in the livers from fish exposed to PAHs as well as inhibition of the catalase activity. Our results show that irradiation altered the bioavailability of PAHs, especially benzanthracene, which has great impact in aquatic ecosystems. Among the consequences of physical and chemical changes to PAHs, we observed a significant increase in NMA and MN incidence in E. marginatus erythrocytes, indicating the potential initiation of mutagenic and carcinogenic processes.


Assuntos
Bass/metabolismo , Ecotoxicologia , Processos Fotoquímicos , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Fatores de Tempo
4.
J Environ Sci Health B ; 50(7): 449-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996808

RESUMO

In this study, we used primary cultures of fish hepatic cells as a tool for evaluating the effects of environmental contamination. Primary hepatic cell cultures derived from the subtropical fish Metynnis roosevelti were exposed to different concentrations (0.275, 2.75 and 27.5 µg L(-1)) of the herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA). Cellular respiratory activity was evaluated by polarography using three substrates: 0.5 M glucose, 0.5 M succinate and 0.5 M α-ketoglutarate. Significant changes were observed in cellular oxygen consumption with 0.5 M α-ketoglutarate. Even at low concentrations, 2,4-D and MCPA were potent uncouplers of oxidative phosphorylation. Primary cultures of M. roosevelti liver cells may provide a useful tool for the evaluation of environmental contaminant effects. A review of regulations regarding permitted concentrations of these herbicides is needed.


Assuntos
Ácido 2,4-Diclorofenoxiacético/toxicidade , Ácido 2-Metil-4-clorofenoxiacético/toxicidade , Herbicidas/toxicidade , Animais , Células Cultivadas , Characidae/metabolismo , Relação Dose-Resposta a Droga , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Fígado/efeitos dos fármacos , Polarografia/instrumentação , Polarografia/métodos , Testes de Toxicidade/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA