Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Oral Investig ; 27(5): 2221-2234, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36977761

RESUMO

OBJECTIVES: To evaluate the biocompatibility, physical and chemical properties of three pre-mixed calcium silicate-based sealers and an epoxy resin-based material were assessed. Pre-mixed sealers supposedly obtain water from the root canal moist to hydrate and set. MATERIALS AND METHODS: Polyethylene tubes were filled with the materials Bio-C Sealer Ion+, Bio-C Sealer, EndoSequence BC Sealer and AH Plus Jet, or left empty and surgically implanted in the subcutaneous tissue of Wistar rats. The animals were euthanised and the tubes and tissue were removed for histological analysis and scanning electron microscopy (SEM) coupled with energy-dispersive spectrometry (EDS). Materials' surface chemical characterisation was assessed using Raman spectroscopy and SEM/EDS. Flow, setting time (in two conditions), solubility, radiopacity and pH were also analysed. ANOVA and Bonferroni correction were performed for comparisons (P < 0.05). RESULTS: Inflammatory response observed in the tissues subsided from 7 to 30 days. Tungsten migration could be detected in the surrounding tissue following AH Plus Jet implantation. All calcium silicate-based sealers exhibited zirconium oxide (radiopacifier) and tricalcium silicate peaks before and after implantation. All materials exhibited flow values above 17 mm. An approximately tenfold difference was observed between the plaster- and metal-mould setting times of the calcium silicate cements indicating its sensitivity to moist variations and solubility above 8% was also observed for these materials. CONCLUSIONS: Pre-mixed materials exhibited variable setting time and solubility with a decreasing inflammatory response. CLINICAL RELEVANCE: The variable moist-dependant setting time with high solubility poses a concern for the clinical use of these pre-mixed sealers.


Assuntos
Materiais Restauradores do Canal Radicular , Ratos , Animais , Materiais Restauradores do Canal Radicular/farmacologia , Materiais Restauradores do Canal Radicular/química , Tela Subcutânea , Ratos Wistar , Cromatografia Gasosa-Espectrometria de Massas , Compostos de Cálcio/química , Resinas Epóxi/química , Silicatos/química , Teste de Materiais
2.
Polymers (Basel) ; 14(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36365690

RESUMO

Cardanol, principal constituent of the technical cashew nut shell liquid, has applications as antioxidant and antibacterial, and these properties may be enhanced through encapsulation. In the present study, we isolated and purified cardanol, and nanoparticles (NPs) were produced by polyelectrolyte complexation using polysaccharide systems with chitosan, sodium alginate, and non-toxic Arabic gum, because they are biocompatible, biodegradable, and stable. We characterized the NPs for morphological, physicochemical, and antioxidant activity. The micrographs obtained revealed spherical and nanometric morphology, with 70% of the distribution ranging from 34 to 300 nm, presenting a bimodal distribution. The study of the spectra in the infrared region suggested the existence of physicochemical interactions and cross-links between the biopolymers involved in the encapsulated NPs. Furthermore, the NPs showed better antioxidant potential when compared to pure cardanol. Thus, the encapsulation of cardanol may be an effective method to maintain its properties, promote better protection of the active ingredient, minimize side effects, and can target its activities in specific locations, by inhibiting free radicals in various sectors such as pharmaceutical, nutraceutical, and biomedical.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA