Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Tipo de estudo
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 75(5): 1383-1388, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35971818

RESUMO

The objective of this study is to verify in vitro susceptibility of Pythium insidiosum against the agricultural fungicides mefenoxam and pyraclostrobin and evaluate the toxicity of both compounds. Twenty-one P. insidiosum isolates were tested against mefenoxam and pyraclostrobin using the broth microdilution method. Minimum inhibitory and oomicidal concentrations for both compounds were established. Additionally, scanning electron microscopy was performed on P. insidiosum hyphae treated with the sublethal concentration of each fungicide. The toxicity of the compounds was evaluated in vivo Caenorhabditis elegans model. The concentration to inhibit 100% of P. insidiosum growth ranged from 0·625 to 10 µg ml-1 for mefenoxam and from 0·019 to 5 µg ml-1 for pyraclostrobin. The SEM analysis revealed changes on the surface of the hyphae treated with the fungicides, suggesting possible damage caused by these compounds. There was no evidence of toxicity in vivo models. Mefenoxam and pyraclostrobin did not show toxicity at the doses evaluated and have inhibitory effects on the pathogenic oomycete P. insidiosum. However, further evaluations of their pharmacokinetics and toxicity in different animal species and possible pharmacological interactions are necessary to infer a possible use in the clinical management of pythiosis.


Assuntos
Fungicidas Industriais , Pythium , Animais , Fungicidas Industriais/farmacologia , Testes de Sensibilidade Microbiana
2.
Braz J Med Biol Res ; 51(9): e7552, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29972429

RESUMO

Guarana (Paullinia cupana) is habitually ingested by people in the Amazon region and is a key ingredient in various energy drinks consumed worldwide. Extension in longevity and low prevalence of chronic age-related diseases have been associated to habitual intake of guarana. Anti-aging potential of guarana was also demonstrated in Caenorhabditis elegans; however, the mechanisms involved in its effects are not clear. Herein, we investigated the putative pathways that regulate the effects of guarana ethanolic extract (GEE) on lifespan using C. elegans. The major known longevity pathways were analyzed through mutant worms and RT-qPCR assay (DAF-2, DAF-16, SKN-1, SIR-2.1, HSF-1). The possible involvement of purinergic signaling was also investigated. This study demonstrated that GEE acts through antioxidant activity, DAF-16, HSF-1, and SKN-1 pathways, and human adenosine receptor ortholog (ADOR-1) to extend lifespan. GEE also downregulated skn-1, daf-16, sir-2.1 and hsp-16.2 in 9-day-old C. elegans, which might reflect less need to activate these protective genes due to direct antioxidant effects. Our results contribute to the comprehension of guarana effects in vivo, which might be helpful to prevent or treat aging-associated disorders, and also suggest purinergic signaling as a plausible therapeutic target for longevity studies.


Assuntos
Antioxidantes/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Paullinia/química , Extratos Vegetais/farmacologia , Envelhecimento/efeitos dos fármacos , Animais , Antioxidantes/isolamento & purificação , Caenorhabditis elegans/fisiologia , Longevidade/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
3.
Braz. j. med. biol. res ; 51(9): e7552, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951753

RESUMO

Guarana (Paullinia cupana) is habitually ingested by people in the Amazon region and is a key ingredient in various energy drinks consumed worldwide. Extension in longevity and low prevalence of chronic age-related diseases have been associated to habitual intake of guarana. Anti-aging potential of guarana was also demonstrated in Caenorhabditis elegans; however, the mechanisms involved in its effects are not clear. Herein, we investigated the putative pathways that regulate the effects of guarana ethanolic extract (GEE) on lifespan using C. elegans. The major known longevity pathways were analyzed through mutant worms and RT-qPCR assay (DAF-2, DAF-16, SKN-1, SIR-2.1, HSF-1). The possible involvement of purinergic signaling was also investigated. This study demonstrated that GEE acts through antioxidant activity, DAF-16, HSF-1, and SKN-1 pathways, and human adenosine receptor ortholog (ADOR-1) to extend lifespan. GEE also downregulated skn-1, daf-16, sir-2.1 and hsp-16.2 in 9-day-old C. elegans, which might reflect less need to activate these protective genes due to direct antioxidant effects. Our results contribute to the comprehension of guarana effects in vivo, which might be helpful to prevent or treat aging-associated disorders, and also suggest purinergic signaling as a plausible therapeutic target for longevity studies.


Assuntos
Animais , Extratos Vegetais/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Paullinia/química , Antioxidantes/farmacologia , Fatores de Tempo , Envelhecimento/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Longevidade/efeitos dos fármacos , Antioxidantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA