RESUMO
Discussions surrounding the positive impacts of nature on human health and strategies to enhance our connection with the natural world have been ongoing. However, a limited number of theoretical models are available to guide research and practice in this area. Therefore, there is a pressing need for a systematic framework that outlines clear steps for conducting research implementing nature-based interventions. In this study, we investigate the relationship between health and nature through the lens of Complex Adaptive Systems. This approach involves examining the dynamic interactions between multiple interconnected elements to understand the complex emergent behaviors that arise from such relationships. Our model is designed to support nature-based interventions, considering the essential interdependence between humans and nature. This perspective aims to improve both human health and biodiversity conservation in a mutually beneficial manner. The underlying interactions that drive nature-based health interventions are thoroughly explored, leading us to propose a novel intervention model named "A time with e-Natureza" (e-Nature). This model encompasses four types of experiences, drawing from scientific literature and insights from authors engaged in an interdisciplinary research group: (1) Aesthetic and emotional experience; (2) Multisensory integration experience; (3) Knowledge experience; and (4) Engagement experience. Each experience within the model targets affective, cognitive, and behavioral aspects, with a specific focus on fostering a deeper connection with nature. Distinct activities are incorporated within each experience to promote successful outcomes. The model is grounded in existing theories that address the human-nature relationship and is informed by Nursing theories that support health promotion interventions. By presenting this new model, our aim is to contribute to the effective implementation of nature-based interventions that not only enhance human well-being but also support the conservation of nature. This integrated approach recognizes the mutual benefits of human-nature interaction and offers valuable insights for future research and practical applications in the fields of nature and health.
RESUMO
PURPOSE: Cardiorespiratory fitness is inversely associated with a high risk of cardiovascular disease, all-cause mortality, and mortality attributable to various cancers. It is often estimated indirectly using mathematical formulas for estimating oxygen uptake. Cardiopulmonary exercise testing, especially oxygen uptake, represents the "gold standard" for assessing exercise capacity. The purpose of this report was to develop reference standards for exercise capacity by establishing cardiorespiratory fitness values derived from cardiopulmonary exercise testing in a Brazilian population. We focused on oxygen uptake standards and compared the maximal oxygen uptake [mLO2·kg-1·min-1] values with those in the existing literature. METHODS: A database was constructed using reports from cardiopulmonary exercise testing performed at Fleury laboratory. The final cohort included 18,189 individuals considered to be free of structural heart disease. Percentiles of maximal oxygen uptake for men and women were determined for six age groups between 7 and 84 years. We compared the values with existing reference data from patients from Norway and the United States. RESULTS: There were significant differences in maximal oxygen uptake between sexes and across the age groups. In our cohort, the 50th percentile maximal oxygen uptake values for men and women decreased from 44.7 and 36.3 mLO2·kg-1·min-1 to 28.4 and 22.3 mLO2·kg-1·min-1 for patients aged 20-29 years to patients aged 60-69 years, respectively. For each age group, both Norwegian men and women had greater cardiorespiratory fitness than cohorts in the United States and Brazil. CONCLUSION: To our knowledge, our analysis represents the largest reference data for cardiorespiratory fitness based on treadmill cardiopulmonary exercise testing. Our findings provide reference values of maximal oxygen uptake measurements from treadmill tests in Brazilian populations that are more accurate than previous standard values based on workload-derived estimations. This data may also add information to the global data used for the interpretation of cardiorespiratory fitness.