Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biochem Parasitol ; 252: 111520, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36122704

RESUMO

Schistosomiasis is a neglected disease that affects about 258 million people worldwide. Caused by Schistosoma mansoni, helminth which, in Brazil, it is present on 19 states and capital. Praziquantel (PZQ) treatment presents low efficacy and adverse effects in parasites juvenile stages. Thiosemicarbazones and thiazolidinones are rising as potent chemical groups that have biological activity wide spectrum, and with radical modifications, they may become more effective and selective. Aiming to evaluate the action of these molecules against S. mansoni, JF series thiosemicarbazones and thiazolidinones (LqIT/UFPE) were synthesized: JF30, JF31, JF33, JF34, JF35, JF36, JF38, JF39, JF42 and JF43. Several parameters were evaluated, such as: their cytotoxicity in VERO cells, in vitro schistosomicidal activity for juvenile and adult worms and their action on worms through ultrastructural changes. Cytotoxicity indices ranged from 272 µM to 725 µM. When evaluating mortality rate, adult and juvenile worms showed 100 % mortality rate within 24 h and 48 h, respectively, when exposed to the compounds JF31 and JF43 at a dose of 200 µM. Also, motility, mortality and oviposition parameters were evaluated: JF31 and JF43 presented a score of 0 in 24 h, meaning total absence of movement, whereas no eggs and soft tissue damage were observed under optical microscopy. Through scanning electron microscopy, integumentary alterations caused by the compounds JF31 and JF43 were observed, such as: exposure of the musculature, formation of integumentary bubbles, integuments with abnormal morphology and destruction of tubercles and spikes. The results shoerd that the compound JF31 was 2.39 times more selective for adult worms and JF43 was 3.74 times more selective for juvenile worms. Thus, the compounds JF43 and JF31 are the most promising for presenting schistosomicidal activity of S. mansoni.


Assuntos
Esquistossomose mansoni , Esquistossomicidas , Tiossemicarbazonas , Chlorocebus aethiops , Animais , Feminino , Esquistossomicidas/farmacologia , Esquistossomicidas/uso terapêutico , Schistosoma mansoni , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/uso terapêutico , Células Vero , Praziquantel/farmacologia , Esquistossomose mansoni/tratamento farmacológico
2.
Eur J Pharm Sci ; 138: 104985, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31283945

RESUMO

The present work aimed to carry out in vitro biological assays of indol-3-yl derivatives thiosemicarbazones (2a-e) and 4-thiazolidinones (3a-d) against juvenile and adult worms of S. mansoni, as well as the in silico determination of pharmacokinetic parameters for the prediction of the oral bioavailability of these derivatives. All compounds were initially screened at a concentration of 200 µM against S. mansoni adult worms and the results evidenced the good activity of compounds 2b, 2d and 3b, which caused 100% mortality after 24, 48 and 72 h, respectively. Subsequent studies with these same compounds revealed that compound 2b was able to reduce the viability of the parasites by 85% and 83% at concentrations of 200 and 100 µM, respectively. In relation to the juvenile worms, all compounds (2b, 2d and 3b) were able to cause mortality, but compound 2b demonstrated better activity causing 100% mortality in 48 h. Additionally, it was possible to observe reduction in the viability of juvenile worms of 85%, 81% and 64% at concentrations of 200, 100 and 50 µM, respectively. Several ultrastructural damages were observed when adult and juvenile S. mansoni worms were exposed to compound 2b (200 µM) that was characterized by extensive destruction by the integument, which may justify the mortality rate of cultured parasites. In the DNA interaction assay, fragmentation of the genetic material of adult worms when treated with compound 2b (200 µM) was evidenced, indicating the apoptosis process as mechanism of parasite death. Regarding pharmacokinetic properties, all derivatives are according to the required parameters, predicting good oral bioavailability for the studied compounds. The results presented in this study reveal the good activity of compound 2b in both adult and juvenile worms of S. mansoni, pointing this compound as promising in the development of further studies on schistosomicidal activity.


Assuntos
Schistosoma mansoni/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/farmacocinética , Animais , Helmintos/efeitos dos fármacos , Esquistossomicidas/farmacocinética , Esquistossomicidas/farmacologia
3.
Chem Biol Interact ; 283: 20-29, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29366735

RESUMO

Schistosomiasis is considered a serious public health problem in 78 countries and territories located in Africa, Asia and America and it is estimated in more than 249 million people infected by any of the species of Schistosoma. The exclusive use of praziquantel (PZQ), effective drug against all species of Schistosoma, has been the basis of the development of a possible resistance against the strains of this parasite. In addition, PZQ is not effective against young forms of worms. Thus, there is a need for the development of new drugs with schistosomicidal activity. The objective of this work was to synthesize and to evaluate the therapeutic potential of new benzodioxole derivatives (3-14) candidates for schistosomicidal drugs. All compounds synthesized showed in vitro schistosomicidal activity. The derivative 12 was considered the best compound, since it took 100% of worms to mortality in the first 72 h of exposure at the concentration of 100 µM and 83.3% at the concentration of 50 µM. Furthermore, male and female adult worms, incubated for 24 h with the compound 12 showed tegument damages characterized by extensive desquamation and edema, tuber destruction, bubble formation and exposure of the muscle layer. This compound has a restricted structure, where the thiazolidinone is attached to the 4-position of the 1,3-benzodioxol ring. The structural conformation of derivative 12 was probably responsible for the promising schistosomicidal activity, where the presence of an electron/conformational restriction of the thiazolidine ring, as well as the action of bromine as a bulk substitute, favored an increase in biological activity. In addition, tegumentary changes caused by derivative 12 may also have been responsible for the death of adult worms of Schistosoma mansoni. Therefore, we verified that the results obtained in this study make benzodioxole derivatives possible candidates for prototypes of new schistosomicidal drugs.


Assuntos
Dioxóis/química , Dioxóis/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomicidas/síntese química , Esquistossomicidas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Dioxóis/uso terapêutico , Células HeLa , Humanos , Microscopia Eletrônica de Varredura , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Schistosoma mansoni/ultraestrutura , Esquistossomose/tratamento farmacológico , Esquistossomose/patologia , Esquistossomicidas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA