Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(15): eadf7001, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608030

RESUMO

Genes implicated in translation control have been associated with autism spectrum disorders (ASDs). However, some important genetic causes of autism, including the 16p11.2 microdeletion, bear no obvious connection to translation. Here, we use proteomics, genetics, and translation assays in cultured cells and mouse brain to reveal altered translation mediated by loss of the kinase TAOK2 in 16p11.2 deletion models. We show that TAOK2 associates with the translational machinery and functions as a translational brake by phosphorylating eukaryotic elongation factor 2 (eEF2). Previously, all signal-mediated regulation of translation elongation via eEF2 phosphorylation was believed to be mediated by a single kinase, eEF2K. However, we show that TAOK2 can directly phosphorylate eEF2 on the same regulatory site, but functions independently of eEF2K signaling. Collectively, our results reveal an eEF2K-independent signaling pathway for control of translation elongation and suggest altered translation as a molecular component in the etiology of some forms of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Ursidae , Animais , Camundongos , Transtorno Autístico/genética , Fator 2 de Elongação de Peptídeos , Fosforilação , Transtorno do Espectro Autista/genética , Bioensaio
2.
Mol Psychiatry ; 27(11): 4707-4721, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36123424

RESUMO

The precise development of the neocortex is a prerequisite for higher cognitive and associative functions. Despite numerous advances that have been made in understanding neuronal differentiation and cortex development, our knowledge regarding the impact of specific genes associated with neurodevelopmental disorders on these processes is still limited. Here, we show that Taok2, which is encoded in humans within the autism spectrum disorder (ASD) susceptibility locus 16p11.2, is essential for neuronal migration. Overexpression of de novo mutations or rare variants from ASD patients disrupts neuronal migration in an isoform-specific manner. The mutated TAOK2α variants but not the TAOK2ß variants impaired neuronal migration. Moreover, the TAOK2α isoform colocalizes with microtubules. Consequently, neurons lacking Taok2 have unstable microtubules with reduced levels of acetylated tubulin and phosphorylated JNK1. Mice lacking Taok2 develop gross cortical and cortex layering abnormalities. Moreover, acute Taok2 downregulation or Taok2 knockout delayed the migration of upper-layer cortical neurons in mice, and the expression of a constitutively active form of JNK1 rescued these neuronal migration defects. Finally, we report that the brains of the Taok2 KO and 16p11.2 del Het mouse models show striking anatomical similarities and that the heterozygous 16p11.2 microdeletion mouse model displayed reduced levels of phosphorylated JNK1 and neuronal migration deficits, which were ameliorated upon the introduction of TAOK2α in cortical neurons and in the developing cortex of those mice. These results delineate the critical role of TAOK2 in cortical development and its contribution to neurodevelopmental disorders, including ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Neocórtex , Proteínas Serina-Treonina Quinases , Animais , Humanos , Camundongos , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Modelos Animais de Doenças , Microtúbulos/genética , Microtúbulos/metabolismo , Neocórtex/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
3.
Sci Rep ; 11(1): 9106, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907211

RESUMO

Neurodevelopmental disorders arise from combined defects in processes including cell proliferation, differentiation, migration and commissure formation. The evolutionarily conserved tumor-suppressor protein Scribble (Scrib) serves as a nexus to transduce signals for the establishment of apicobasal and planar cell polarity during these processes. Human SCRIB gene mutations are associated with neural tube defects and this gene is located in the minimal critical region deleted in the rare Verheij syndrome. In this study, we generated brain-specific conditional cKO mouse mutants and assessed the impact of the Scrib deletion on brain morphogenesis and behavior. We showed that embryonic deletion of Scrib in the telencephalon leads to cortical thickness reduction (microcephaly) and partial corpus callosum and hippocampal commissure agenesis. We correlated these phenotypes with a disruption in various developmental mechanisms of corticogenesis including neurogenesis, neuronal migration and axonal connectivity. Finally, we show that Scrib cKO mice have psychomotor deficits such as locomotor activity impairment and memory alterations. Altogether, our results show that Scrib is essential for early brain development due to its role in several developmental cellular mechanisms that could underlie some of the deficits observed in complex neurodevelopmental pathologies.


Assuntos
Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Comportamento Animal , Encéfalo/anormalidades , Proliferação de Células , Córtex Cerebral/crescimento & desenvolvimento , Feminino , Deleção de Genes , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Memória/fisiologia , Camundongos Knockout , Camundongos Transgênicos , Microcefalia/genética , Transtornos Psicomotores/genética , Fatores de Transcrição/genética
4.
Sci Rep ; 9(1): 15940, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685876

RESUMO

Microtubule severing regulates cytoskeletal rearrangement underlying various cellular functions. Katanin, a heterodimer, consisting of catalytic (p60) and regulatory (p80) subunits severs dynamic microtubules to modulate several stages of cell division. The role of p60 katanin in the mammalian brain with respect to embryonic and adult neurogenesis is poorly understood. Here, we generated a Katna1 knockout mouse and found that consistent with a critical role of katanin in mitosis, constitutive homozygous Katna1 depletion is lethal. Katanin p60 haploinsufficiency induced an accumulation of neuronal progenitors in the subventricular zone during corticogenesis, and impaired their proliferation in the adult hippocampus dentate gyrus (DG) subgranular zone. This did not compromise DG plasticity or spatial and contextual learning and memory tasks employed in our study, consistent with the interpretation that adult neurogenesis may be associated with selective forms of hippocampal-dependent cognitive processes. Our data identify a critical role for the microtubule-severing protein katanin p60 in regulating neuronal progenitor proliferation in vivo during embryonic development and adult neurogenesis.


Assuntos
Diferenciação Celular , Katanina/genética , Microtúbulos/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Fatores Etários , Alelos , Animais , Diferenciação Celular/genética , Proliferação de Células , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Giro Denteado/embriologia , Giro Denteado/metabolismo , Marcação de Genes , Haploinsuficiência , Katanina/metabolismo , Aprendizagem , Memória , Camundongos , Camundongos Knockout , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Organogênese , Fenótipo
5.
J Neurosci ; 35(6): 2372-83, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25673832

RESUMO

Perturbations in fast-spiking parvalbumin (PV) interneurons are hypothesized to be a major component of various neuropsychiatric disorders; however, the mechanisms regulating PV interneurons remain mostly unknown. Recently, cyclin-dependent kinase 5 (Cdk5) has been shown to function as a major regulator of synaptic plasticity. Here, we demonstrate that genetic ablation of Cdk5 in PV interneurons in mouse brain leads to an increase in GABAergic neurotransmission and impaired synaptic plasticity. PVCre;fCdk5 mice display a range of behavioral abnormalities, including decreased anxiety and memory impairment. Our results reveal a central role of Cdk5 expressed in PV interneurons in gating inhibitory neurotransmission and underscore the importance of such regulation during behavioral tasks. Our findings suggest that Cdk5 can be considered a promising therapeutic target in a variety of conditions attributed to inhibitory interneuronal dysfunction, such as epilepsy, anxiety disorders, and schizophrenia.


Assuntos
Ansiedade/psicologia , Quinase 5 Dependente de Ciclina/genética , Inibição Psicológica , Interneurônios/metabolismo , Transtornos da Memória/psicologia , Parvalbuminas/metabolismo , Animais , Ansiedade/genética , Comportamento Animal/fisiologia , Interneurônios/enzimologia , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/ultraestrutura , Ácido gama-Aminobutírico/metabolismo
6.
Nat Neurosci ; 15(7): 1022-31, 2012 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-22683681

RESUMO

How neurons develop their morphology is an important question in neurobiology. Here we describe a new pathway that specifically affects the formation of basal dendrites and axonal projections in cortical pyramidal neurons. We report that thousand-and-one-amino acid 2 kinase (TAOK2), also known as TAO2, is essential for dendrite morphogenesis. TAOK2 downregulation impairs basal dendrite formation in vivo without affecting apical dendrites. Moreover, TAOK2 interacts with Neuropilin 1 (Nrp1), a receptor protein that binds the secreted guidance cue Semaphorin 3A (Sema3A). TAOK2 overexpression restores dendrite formation in cultured cortical neurons from Nrp1(Sema-) mice, which express Nrp1 receptors incapable of binding Sema3A. TAOK2 overexpression also ameliorates the basal dendrite impairment resulting from Nrp1 downregulation in vivo. Finally, Sema3A and TAOK2 modulate the formation of basal dendrites through the activation of the c-Jun N-terminal kinase (JNK). These results delineate a pathway whereby Sema3A and Nrp1 transduce signals through TAOK2 and JNK to regulate basal dendrite development in cortical neurons.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Dendritos/fisiologia , Predisposição Genética para Doença/genética , MAP Quinase Quinase Quinases/genética , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Células Cultivadas , Criança , Transtornos Globais do Desenvolvimento Infantil/patologia , Regulação para Baixo/genética , Feminino , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/biossíntese , Camundongos , Neocórtex/patologia , Gravidez , Proteínas Serina-Treonina Quinases , Ratos
7.
Commun Integr Biol ; 4(3): 304-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21980564

RESUMO

The shape of a neuron supplies valuable clues as to its function. Neurons typically extend a single long, thin axon, which will transmit signals and several shorter and thicker dendrites, which will receive signals. The understanding of the means by which neurons acquire a polarized morphology is a fundamental issue in developmental neurobiology. The current view suggests that axon selection involves a stochastic mechanism. However, new data suggest that a polarized cytoplasm not only determines the position of neurite emergence, but also sets the conditions for morphological polarization. In vertebrates, neurons migrate before establishing their final morphology. Recent work shows that the polarized cytoplasm also determines how neurons migrate. Thus, neuronal migration might influence the processes by which neurons form an axon.

8.
J Neurosci ; 30(31): 10391-406, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20685982

RESUMO

The mechanisms underlying the normal development of neuronal morphology remain a fundamental question in neurobiology. Studies in cultured neurons have suggested that the position of the centrosome and the Golgi may predict the site of axon outgrowth. During neuronal migration in the developing cortex, however, the centrosome and Golgi are oriented toward the cortical plate at a time when axons grow toward the ventricular zone. In the current work, we use in situ live imaging to demonstrate that the centrosome and the accompanying polarized cytoplasm exhibit apical translocation in newborn cortical neurons preceding initial axon outgrowth. Disruption of centrosomal activity or downregulation of the centriolar satellite protein PCM-1 affects axon formation. We further show that downregulation of the centrosomal protein Cep120 impairs microtubule organization, resulting in increased centrosome motility. Decreased centrosome motility resulting from microtubule stabilization causes an aberrant centrosomal localization, leading to misplaced axonal outgrowth. Our results reveal the dynamic nature of the centrosome in developing cortical neurons, and implicate centrosome translocation and microtubule organization during the multipolar stage as important determinants of axon formation.


Assuntos
Axônios/metabolismo , Movimento Celular/fisiologia , Centrossomo/metabolismo , Neocórtex/metabolismo , Neurônios/metabolismo , Análise de Variância , Animais , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Morte Celular , Linhagem Celular , Polaridade Celular , Células Cultivadas , Regulação para Baixo , Eletroporação , Técnicas de Cultura Embrionária , Imunofluorescência , Complexo de Golgi/metabolismo , Humanos , Camundongos , Microscopia Confocal , Microtúbulos/metabolismo
9.
Nature ; 436(7051): 704-8, 2005 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16079847

RESUMO

Neuronal polarization occurs shortly after mitosis. In neurons differentiating in vitro, axon formation follows the segregation of growth-promoting activities to only one of the multiple neurites that form after mitosis. It is unresolved whether such spatial restriction makes use of an intrinsic program, like during C. elegans embryo polarization, or is extrinsic and cue-mediated, as in migratory cells. Here we show that in hippocampal neurons in vitro, the axon consistently arises from the neurite that develops first after mitosis. Centrosomes, the Golgi apparatus and endosomes cluster together close to the area where the first neurite will form, which is in turn opposite from the plane of the last mitotic division. We show that the polarized activities of these organelles are necessary and sufficient for neuronal polarization: (1) polarized microtubule polymerization and membrane transport precedes first neurite formation, (2) neurons with more than one centrosome sprout more than one axon and (3) suppression of centrosome-mediated functions precludes polarization. We conclude that asymmetric centrosome-mediated dynamics in the early post-mitotic stage instruct neuronal polarity, implying that pre-mitotic mechanisms with a role in division orientation may in turn participate in this event.


Assuntos
Polaridade Celular , Centrossomo/metabolismo , Neurônios/citologia , Animais , Axônios/metabolismo , Transporte Biológico , Diferenciação Celular , Movimento Celular , Células Cultivadas , Sinais (Psicologia) , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Hipocampo/citologia , Microtúbulos/metabolismo , Mitose , Neuritos/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA