Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Rev Camb Philos Soc ; 99(2): 409-429, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37872698

RESUMO

Ectotherms that maintain thermal balance in the face of varying climates should be able to colonise a wide range of habitats. In lizards, thermoregulation usually appears as a variety of behaviours that buffer external influences over physiology. Basking species rely on solar radiation to raise body temperatures and usually show high thermoregulatory precision. By contrast, species that do not bask are often constrained by climatic conditions in their habitats, thus having lower thermoregulatory precision. While much focus has been given to the effects of mean habitat temperatures, relatively less is known about how seasonality affects the thermal biology of lizards on a macroecological scale. Considering the current climate crisis, assessing how lizards cope with temporal variations in environmental temperature is essential to understand better how these organisms will fare under climate change. Activity body temperatures (Tb ) represent the internal temperature of an animal measured in nature during its active period (i.e. realised thermal niche), and preferred body temperatures (Tpref ) are those selected by an animal in a laboratory thermal gradient that lacks thermoregulatory costs (i.e. fundamental thermal niche). Both traits form the bulk of thermal ecology research and are often studied in the context of seasonality. In this study, we used a meta-analysis to test how environmental temperature seasonality influences the seasonal variation in the Tb and Tpref of lizards that differ in thermoregulatory strategy (basking versus non-basking). Based on 333 effect sizes from 137 species, we found that Tb varied over a greater magnitude than Tpref across seasons. Variations in Tb were not influenced by environmental temperature seasonality; however, body size and thermoregulatory strategy mediated Tb responses. Specifically, larger species were subjected to greater seasonal variations in Tb , and basking species endured greater seasonal variations in Tb compared to non-basking species. On the other hand, the seasonal variation in Tpref increased with environmental temperature seasonality regardless of body size. Thermoregulatory strategy also influenced Tpref , suggesting that behaviour has an important role in mediating Tpref responses to seasonal variations in the thermal landscape. After controlling for phylogenetic effects, we showed that Tb and Tpref varied significantly across lizard families. Taken together, our results support the notion that the relationship between thermal biology responses and climatic parameters can be taxon and trait dependent. Our results also showcase the importance of considering ecological and behavioural aspects in macroecological studies. We further highlight current systematic, geographical, and knowledge gaps in thermal ecology research. Our work should benefit those who aim to understand more fully how seasonality shapes thermal biology in lizards, ultimately contributing to the goal of elucidating the evolution of temperature-sensitive traits in ectotherms.


Assuntos
Lagartos , Humanos , Animais , Lagartos/fisiologia , Filogenia , Regulação da Temperatura Corporal , Temperatura , Biologia , Temperatura Corporal
2.
Zoology (Jena) ; 144: 125880, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33310388

RESUMO

Associations among ecology, morphology and locomotor performance have been intensively investigated in several vertebrate lineages. Knowledge on how phenotypes evolve in natural environments likely benefits from identification of circumstances that might expand current ecomorphological equations. In this study, we used two species of Calyptommatus lizards from Brazilian Caatingas to evaluate if specific soil properties favor burrowing performance. As a derived prediction, we expected that functional associations would be easily detectable at the sand condition that favors low-resistance burrowing. We collected two endemic lizards and soil samples in their respective localities, obtained morphological data and recorded performance of both species in different sand types. As a result, the two species burrowed faster at the fine and homogeneous sand, the only condition where we detected functional associations between morphology and locomotion. In this sand type, lizards from both Calyptommatus species that have higher trunks and more concave heads were the ones that burrowed faster, and these phenotypic traits did not morphologically discriminate the two Calyptommatus populations studied. We discuss that integrative approaches comprising manipulation of environmental conditions clearly contribute to elucidate processes underlying phenotypic evolution in fossorial lineages.


Assuntos
Comportamento Animal/fisiologia , Lagartos/anatomia & histologia , Lagartos/fisiologia , Distribuição Animal , Animais , Brasil , Lagartos/genética , Filogenia , Areia , Especificidade da Espécie
3.
J Exp Med ; 218(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33231615

RESUMO

Severe cases of COVID-19 are characterized by a strong inflammatory process that may ultimately lead to organ failure and patient death. The NLRP3 inflammasome is a molecular platform that promotes inflammation via cleavage and activation of key inflammatory molecules including active caspase-1 (Casp1p20), IL-1ß, and IL-18. Although participation of the inflammasome in COVID-19 has been highly speculated, the inflammasome activation and participation in the outcome of the disease are unknown. Here we demonstrate that the NLRP3 inflammasome is activated in response to SARS-CoV-2 infection and is active in COVID-19 patients. Studying moderate and severe COVID-19 patients, we found active NLRP3 inflammasome in PBMCs and tissues of postmortem patients upon autopsy. Inflammasome-derived products such as Casp1p20 and IL-18 in the sera correlated with the markers of COVID-19 severity, including IL-6 and LDH. Moreover, higher levels of IL-18 and Casp1p20 are associated with disease severity and poor clinical outcome. Our results suggest that inflammasomes participate in the pathophysiology of the disease, indicating that these platforms might be a marker of disease severity and a potential therapeutic target for COVID-19.


Assuntos
COVID-19/patologia , COVID-19/virologia , Inflamassomos/metabolismo , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Apoptose , Comorbidade , Citocinas/biossíntese , Humanos , Pulmão/patologia , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mudanças Depois da Morte , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA