Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(17): e2303888, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38451476

RESUMO

Current vascular access options require frequent interventions. In situ tissue engineering (TE) may overcome these limitations by combining the initial success of synthetic grafts with long-term advantages of autologous vessels by using biodegradable grafts that transform into autologous vascular tissue at the site of implantation. Scaffolds (6 mm-Ø) made of supramolecular polycarbonate-bisurea (PC-BU), with a polycaprolactone (PCL) anti-kinking-coil, are implanted between the carotid artery and jugular vein in goats. A subset is bio-functionalized using bisurea-modified-Stromal cell-derived factor-1α (SDF1α) derived peptides and ePTFE grafts as controls. Grafts are explanted after 1 and 3 months, and evaluated for material degradation, tissue formation, compliance, and patency. At 3 months, the scaffold is resorbed and replaced by vascular neo-tissue, including elastin, contractile markers, and endothelial lining. No dilations, ruptures, or aneurysms are observed and grafts are successfully cannulated at termination. SDF-1α-peptide-biofunctionalization does not influence outcomes. Patency is lower in TE grafts (50%) compared to controls (100% patency), predominantly caused by intimal hyperplasia. Rapid remodeling of a synthetic, biodegradable vascular scaffold into a living, compliant arteriovenous fistula is demonstrated in a large animal model. Despite lower patency compared to ePTFE, transformation into autologous and compliant living tissue with self-healing capacity may have long-term advantages.


Assuntos
Prótese Vascular , Cabras , Animais , Alicerces Teciduais/química , Implantes Absorvíveis , Fístula Arteriovenosa , Poliésteres/química , Artérias Carótidas/cirurgia , Engenharia Tecidual/métodos , Quimiocina CXCL12/farmacologia , Quimiocina CXCL12/metabolismo , Grau de Desobstrução Vascular
2.
APL Bioeng ; 7(2): 026107, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37234843

RESUMO

Vascular in situ tissue engineering encompasses a single-step approach with a wide adaptive potential and true off-the-shelf availability for vascular grafts. However, a synchronized balance between breakdown of the scaffold material and neo-tissue formation is essential. Chronic kidney disease (CKD) may influence this balance, lowering the usability of these grafts for vascular access in end-stage CKD patients on dialysis. We aimed to investigate the effects of CKD on in vivo scaffold breakdown and tissue formation in grafts made of electrospun, modular, supramolecular polycarbonate with ureido-pyrimidinone moieties (PC-UPy). We implanted PC-UPy aortic interposition grafts (n = 40) in a rat 5/6th nephrectomy model that mimics systemic conditions in human CKD patients. We studied patency, mechanical stability, extracellular matrix (ECM) components, total cellularity, vascular tissue formation, and vascular calcification in CKD and healthy rats at 2, 4, 8, and 12 weeks post-implantation. Our study shows successful in vivo application of a slow-degrading small-diameter vascular graft that supports adequate in situ vascular tissue formation. Despite systemic inflammation associated with CKD, no influence of CKD on patency (Sham: 95% vs CKD: 100%), mechanical stability, ECM formation (Sirius red+, Sham 16.5% vs CKD 25.0%-p:0.83), tissue composition, and immune cell infiltration was found. We did find a limited increase in vascular calcification at 12 weeks (Sham 0.08% vs CKD 0.80%-p:0.02) in grafts implanted in CKD animals. However, this was not associated with increased stiffness in the explants. Our findings suggest that disease-specific graft design may not be necessary for use in CKD patients on dialysis.

3.
Am J Physiol Renal Physiol ; 320(3): F518-F524, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522412

RESUMO

Monitoring renal function is a vital part of kidney research involving rats. The laborious measurement of glomerular filtration rate (GFR) with administration of exogenous filtration markers does not easily allow serial measurements. Using an in-house database of inulin clearances, we developed and validated a plasma creatinine- and plasma urea-based equation to estimate GFR in a large cohort of male rats [development cohort n = 325, R2 = 0.816, percentage of predictions that fell within 30% of the true value (P30) = 76%] that had high accuracy in the validation cohort (n = 116 rats, R2 = 0.935, P30 = 79%). The equation was less accurate in rats with nonsteady-state creatinine, in which the equation should therefore not be used. In conclusion, applying this equation facilitates easy and repeatable estimates of GFR in rats.NEW & NOTEWORTHY This is the first equation, that we know of, which estimates glomerular filtration rate in rats based on a single measurement of body weight, plasma creatinine, and plasma urea.


Assuntos
Adamantano/análogos & derivados , Creatinina/sangue , Dipeptídeos/farmacologia , Taxa de Filtração Glomerular/efeitos dos fármacos , Plasma , Ureia , Adamantano/farmacologia , Angiotensina II/farmacologia , Animais , Rim/metabolismo , Testes de Função Renal , Masculino , Plasma/metabolismo , Ratos , Ureia/metabolismo
4.
Blood ; 121(19): 3997-4006, S1-15, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23532734

RESUMO

Signaling between endothelial cells, endothelial progenitor cells, and stromal cells is crucial for the establishment and maintenance of vascular integrity and involves exosomes, among other signaling pathways. Exosomes are important mediators of intercellular communication in immune signaling, tumor survival, stress responses, and angiogenesis. The ability of exosomes to incorporate and transfer messenger RNAs (mRNAs) encoding for "acquired" proteins or micro RNAs (miRNAs) repressing "resident" mRNA translation suggests that they can influence the physiological behavior of recipient cells. We demonstrate that miR-214, an miRNA that controls endothelial cell function and angiogenesis, plays a dominant role in exosome-mediated signaling between endothelial cells. Endothelial cell-derived exosomes stimulated migration and angiogenesis in recipient cells, whereas exosomes from miR-214-depleted endothelial cells failed to stimulate these processes. Exosomes containing miR-214 repressed the expression of ataxia telangiectasia mutated in recipient cells, thereby preventing senescence and allowing blood vessel formation. Concordantly, specific reduction of miR-214 content in exosome-producing endothelial cells abolishes the angiogenesis stimulatory function of the resulting exosomes. Collectively, our data indicate that endothelial cells release miR-214-containing exosomes to stimulate angiogenesis through the silencing of ataxia telangiectasia mutated in neighboring target cells.


Assuntos
Senescência Celular , Células Endoteliais/metabolismo , Exossomos/metabolismo , Exossomos/fisiologia , MicroRNAs/fisiologia , Neovascularização Fisiológica , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Células Cultivadas , Senescência Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Regulação para Baixo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Via Secretória/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA