Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38777984

RESUMO

Aggregation-induced emission (AIE) is a fascinating phenomenon where specific molecules exhibit enhanced fluorescence upon aggregation. This unique property has revolutionized the design and development of new fluorescent materials for different applications, from biosensors and organic light-emitting diodes (OLEDs) to biomedical imaging and diagnostics. Researchers are creating sensitive and selective sensing platforms, opening new avenues in material science and engineering by harnessing the potential of AIE. To expand the knowledge in this field, this study explored the aggregation-induced emission (AIE) properties of two polymers, namely polyethylene glycol (PEG) and polypropylene glycol (PPG) of low molecular weight (MW) using fluorescence spectroscopy and absorbance (UV). PEG-300 and PPG-725 were the most fluorescent polymers at UV of the ten investigated. Interestingly, AIE did not correlate linearly with molecular weight (MW), and monobutyl ether substitution in PEG with a similar MW substantially altered its AIE. Furthermore, fluorescence precisely quantified low polymer concentrations in water, and non-aqueous solvents suppressed AIE, suggesting potential for AIE manipulation. These findings enhance our understanding of AIE in polymers, fostering the development of novel materials for applications such as biosensors.

2.
Int J Biol Macromol ; 269(Pt 2): 132173, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729461

RESUMO

This study aimed to encapsulate Talaromyces amestolkiae colorants in maltodextrin and chitosan microparticles using the spraydrying technique and to evaluate the biopolymers' capacities to protect the fungal colorant against temperature (65 °C) and extreme pH (2.0 and 13.0). The compact microparticles exhibited smooth or indented surfaces with internal diameters ranging between 2.58-4.69 µm and ζ ~ -26 mV. The encapsulation efficiencies were 86 % and 56 % for chitosan and maltodextrin microparticles, respectively. The shifted endothermic peaks of the free colorants indicated their physical stabilization into microparticles. The encapsulated colorants retained most of their absorbance (compared to the 0 h) even after 25 days at 65 °C. Contrary, the free colorant presented almost no absorbance after 1 day under the same conditions. Colorants in chitosan and maltodextrin matrices also partially maintained their colorimetric and fluorometric properties at acidic pH. However, only maltodextrin improved the resistance of the red colorant to alkaline environments. For the first time, the potential of polysaccharide-based microparticles to preserve polyketide colorants was demonstrated using 3D fluorescence. Therefore, this study demonstrated an alternative in developing functional products with natural color additives.


Assuntos
Quitosana , Polissacarídeos , Quitosana/química , Polissacarídeos/química , Concentração de Íons de Hidrogênio , Corantes/química , Talaromyces/química , Tamanho da Partícula , Temperatura , Microesferas
3.
Bioresour Technol ; 386: 129549, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499926

RESUMO

Lignocellulosic byproducts, mainly generated by the agro-industrial sector, have great potential as cost-effective feedstocks for bioprocesses because of their abundant availability and high content of sugar-rich and nutrient-rich elements. This biomass can be employed as a carbon source to produce various molecules using several microorganisms. Yeast strains have shown their capability to metabolize diverse C5 and C6 carbon sources, thereby facilitating their use in the bioprocessing of lignocellulosic biomass. Furthermore, yeasts can produce a wide range of valuable products, including biofuels, enzymes, proteins, and pigments, making them attractive for use in integrated biorefineries. Yeast-derived pigments have versatile applications and are environmentally friendly alternatives to their synthetic counterparts. This review emphasizes the potential of lignocellulosic biomass as a feedstock for producing yeast-derived products with a focus on pigments as valuable molecules. It also proposes a yeast-derived pigment platform utilizing lignocellulosic byproducts and explores its potential integration in biorefineries.


Assuntos
Lignina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Lignina/metabolismo , Biocombustíveis , Biomassa
4.
Food Chem ; 372: 131214, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34619523

RESUMO

Currently, the ability to produce several kinds of water-soluble red natural colorants makes the genus Talaromyces particularly important to the dye industry, which can be an alternative to the use of harmful synthetic colorants. In this study, colored compounds produced by Talaromyces amestolkiae were extracted, characterized chemically and the color stability of the fermented broth without any extraction procedure was further evaluated over pH variation. Five azaphilones compounds were detected by Ultrahigh Performance Liquid Chromatography-Mass Spectrometry system, all being complexes of the fatty acid amino-hexanedioic acid and azaphilone Monascus colorants. The color of the fermented broth was stable at a wide range of pH (3-9). Furthermore, T. amestolkiae colorants precipitated through hydrolysis of key chemical groups at extremely acidic (pH 1) and lose red color in extremely basic (pH 13) medium, showing negative halochromism. Nevertheless, these findings enhance the industrial relevance of azaphilone colorants produced by biotechnological process.


Assuntos
Monascus , Talaromyces , Benzopiranos , Pigmentos Biológicos , Talaromyces/genética
5.
Appl Microbiol Biotechnol ; 103(16): 6529-6541, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31236616

RESUMO

The replacement of synthetic colors in food products by natural alternatives has been boosted by consumers willing to pay more for healthier products. However, the success of microbial colorants depends not only on its acceptability on the market but also its production costs. Talaromyces species can produce water-soluble red colorants induced by glucose and monosodium glutamate (MSG). In this study, the influence of several conditions was evaluated to produce natural red colorants by submerged culture of Talaromyces amestolkiae. Under optimal conditions (g/L: glucose 10, MSG 25, MgSO4 0.012, FeSO4 0.01, CaCl2 0.015; and initial pH of 5.0), a 30-fold increase in the production was achieved, reaching a red colorant production of 13.44 UA500nm. Depending on the initial pH, colorants with different hues and chroma values were obtained. Deep yellow colorants were derived from neutral and basic pH, while deep red colors were derived from acidic pH. The fluorescence spectrum of culture broth obtained before and after complexation with salts presented red colorants with yellow fluorescence spectra. The information generated in this study would be useful for the formulation of industrial media for large-scale cultivation of T. amestolkiae, which have the potential to produce Talaromyces fermented colorants for use in health foods and pharmaceutics.


Assuntos
Corantes Fluorescentes/metabolismo , Talaromyces/metabolismo , Biotecnologia/métodos , Meios de Cultura/química , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Solubilidade
6.
Biotechnol Appl Biochem ; 66(4): 527-536, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30957320

RESUMO

Green fluorescent protein (GFP) is a globular protein used as biosensor and biomarker in medical and industrial fields. However, due to the expensive production costs of expressing proteins using high-cost inducers like isopropyl-ß-d-1-thiogalactopyranoside (IPTG), the number of GFP applications are still scarce. This work studied the production of enhanced GFP (EGFP) using Escherichia coli BL21 (DE3) [pLysS; pET28(a)], aiming to increase its yield and reduce costs. First, the influence of agitation rate, induction time, and concentration of IPTG in the production of EGFP was evaluated, but only the first two parameters were significant. Subsequently, aiming to reduce costs related to the use of inducer, the IPTG concentration (0.005, 0.010, and 0.025 mM) was decreased and, interestingly, the production levels were maintained or increased. These results show that a proper choice of production conditions, particularly through the decrease of inducer concentration, is effective to reduce the upstream production costs and guarantee high EGFP expression.


Assuntos
Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/economia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/economia , Proteínas Recombinantes/genética
7.
Bioprocess Biosyst Eng ; 42(7): 1235-1246, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30997612

RESUMO

This work studied the effect of the cation alkyl chain length of 1-alkyl-n-methylimidazolium chloride ([Cnmim]Cl)-based ILs on the activity of Aspergillus niger lipase. First, the lipase activity in the presence of different ILs concentration over time was determined. ILs with shorter cation alkyl side chain length, namely [C4mim]Cl and [C6mim]Cl, promoted an increase of lipase activity; while, [C8mim]Cl, depending on its concentration, maintained or decreased the enzyme activity. In the presence of ILs with longer cation alkyl chain length, i.e., [C10mim]Cl and [C12mim]Cl, the lipase relative activity was reduced with 0.1 (%v/v) and until suppressed ([C12mim]Cl at 0.3 (%v/v)) as a result of irreversible changes in its secondary structure. Fluorescence and circular dichroism spectroscopy analysis confirmed the results achieved. These findings show that [Cnmim]Cl-based ILs can exert different behavior on the lipase' activity (enhance, maintain or even inhibit) and structural conformation, depending on the cation alkyl chain length and their relative concentration.


Assuntos
Aspergillus niger/enzimologia , Proteínas Fúngicas/química , Imidazóis/química , Líquidos Iônicos/química , Lipase/química
8.
Biotechnol Prog ; 35(1): e2684, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30006968

RESUMO

The population interest in health products is increasing day-by-day. Thus, the demand for natural products to be added in food and pharmaceutical commodity is also rising. Among these additives, colorants, which provides color to products, can be produced by microorganism through bioprocess. Looking for new source of natural colorants, fungi have been employed to this purpose producing novel and safer natural colorants. So, the main goal of this study was to describe a Talaromyces species able to produce natural colorants and investigate nutritional parameters of colorants production using statistical tool. The taxonomy classified the microorganism as Talaromyces amestolkiae. The statistical design evaluated pH and glucose, meat extract and meat peptone concentration as independent variables, and red colorants production as main response. Under the best condition (g/L: glucose 30, meat extract 1, meat peptone 10, and initial pH of 7.0) an increase of 229% in the red colorant production was achieved as compared with the initial media used. The dried fermented broth containing red colorants showed low cytotoxicity against fibroblasts cells (IC50 > 187.5 g/L) and effective antimicrobial activity against S. aureus (MIC of 2.5 g/L). Thus, T. amestolkiae colorants can be attractive to food and pharmaceutical applications as it does not produce toxic compounds and can promote protection against microorganism contaminants. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2684, 2019.


Assuntos
Pigmentos Biológicos/efeitos adversos , Pigmentos Biológicos/farmacologia , Talaromyces/classificação , Talaromyces/metabolismo , Fermentação , Fibroblastos/efeitos dos fármacos , Filogenia , Pigmentos Biológicos/metabolismo , Staphylococcus aureus/efeitos dos fármacos
9.
Appl Microbiol Biotechnol ; 100(5): 2063-72, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26743657

RESUMO

Production of bacterial nanocellulose (BNC) is becoming increasingly popular owing to its environmentally friendly properties. Based on this benefit of BNC production, researchers have also begun to examine the capacity for cellulose production through microbial hosts. Indeed, several research groups have developed processes for BNC production, and many studies have been published to date, with the goal of developing methods for large-scale production. During BNC bioproduction, the culture medium represents approximately 30 % of the total cost. Therefore, one important and challenging aspect of the fermentation process is identification of a new cost-effective culture medium that can facilitate the production of high yields within short periods of time, thereby improving BNC production and permitting application of BNC in the biotechnological, medical, pharmaceutical, and food industries. In this review, we addressed different aspects of BNC production, including types of fermentation processes and culture media, with the aim of demonstrating the importance of these parameters.


Assuntos
Bactérias/metabolismo , Biotecnologia/métodos , Celulose/metabolismo , Biotecnologia/economia , Meios de Cultura/química , Meios de Cultura/economia , Fermentação
10.
Biotechnol Prog ; 32(1): 5-13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26518672

RESUMO

Bromelain is a cysteine protease found in pineapple tissue. Because of its anti-inflammatory and anti-cancer activities, as well as its ability to induce apoptotic cell death, bromelain has proved useful in several therapeutic areas. The market for this protease is growing, and several studies exploring various properties of this molecule have been reported. This review aims to compile this data, and summarize the main findings on bromelain in the literature to date. The physicochemical properties and stability of bromelain under different conditions are discussed. Several studies on the purification of bromelain from crude extracts using a wide range of techniques such as liquid-liquid extractions by aqueous two-phase system, ultrafiltration, precipitation, and chromatography, have been reported. Finally, the various applications of bromelain are presented. This review therefore covers the main properties of bromelain, aiming to provide an up-to-date compilation of the data reported on this enzyme.


Assuntos
Ananas/química , Bromelaínas/química , Cisteína Proteases/química , Sequência de Aminoácidos/genética , Apoptose/efeitos dos fármacos , Bromelaínas/genética , Bromelaínas/isolamento & purificação , Bromelaínas/uso terapêutico , Cisteína Proteases/uso terapêutico , Humanos
11.
Appl Microbiol Biotechnol ; 99(3): 1181-90, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25472434

RESUMO

Bacterial cellulose (BC) is used in different fields as a biological material due to its unique properties. Despite there being many BC applications, there still remain many problems associated with bioprocess technology, such as increasing productivity and decreasing production cost. New technologies that use waste from the food industry as raw materials for culture media promote economic advantages because they reduce environmental pollution and stimulate new research for science sustainability. For this reason, BC production requires optimized conditions to increase its application. The main objective of this study was to evaluate BC production by Gluconacetobacter xylinus using industry waste, namely, rotten fruits and milk whey, as culture media. Furthermore, the structure of BC produced at different conditions was also determined. The culture media employed in this study were composed of rotten fruit collected from the disposal of free markets, milk whey from a local industrial disposal, and their combination, and Hestrin and Schramm media was used as standard culture media. Although all culture media studied produced BC, the highest BC yield-60 mg/mL-was achieved with the rotten fruit culture. Thus, the results showed that rotten fruit can be used for BC production. This culture media can be considered as a profitable alternative to generate high-value products. In addition, it combines environmental concern with sustainable processes that can promote also the reduction of production cost.


Assuntos
Celulose/metabolismo , Meios de Cultura/química , Gluconacetobacter xylinus/metabolismo , Indústria Alimentícia , Gluconacetobacter xylinus/crescimento & desenvolvimento , Resíduos Industriais , Eliminação de Resíduos/métodos , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA