Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Biol Int ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992896

RESUMO

The aim of this study was to evaluate the effects of chrysin on the ventral prostate of spontaneously hypertensive rats (SHR). Ten-week-old male Wistar and SHR rats received 100 mg/kg/day of chrysin (TW and TSHR) or 200 µL/day of the dilution vehicle (CW and CSHR) for 70 days. After the treatment, the animals were euthanized and the prostates were dissected out, fixed, and processed for further morphological, immunohistochemical, and biochemical analyses. Blood was collected for serological analysis. Chrysin did not interfere with the blood pressure. Morphologically, the epithelial height increased in TW and decreased in TSHR. Stereology showed an increase in the epithelial and stromal relative frequency, and a decrease in the lumen of TW, whereas the epithelium in TSHR was reduced. Normal alveoli decreased, and hyperplastic alveoli had an increment in TW, whereas in TSHR normal alveoli increased and intense hyperplasia decreased. The secretion area was reduced in TW. Immunohistochemical analysis showed a smaller number of PCNA-positive cells in TW. Finally, the biochemical analysis showed a reduction in malondialdehyde, carbonylated proteins, superoxide dismutase, and catalase in TW and TSHR. We concluded that the chrysin effect is dependent on the context in which this flavonoid is employed. In normal conditions, the anabolic potential of the chrysin was favored, disrupting the morphology of the prostate. However, when used in animals predisposed to develop hyperplasia, this flavonoid attenuates the hyperplastic status, improving the morphology of the gland.

2.
Epilepsy Behav ; 90: 7-10, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476810

RESUMO

We investigated the coronary arteries reactivity alterations in rats with epilepsy induced by pilocarpine. To do so, male Wistar rats weighing between 250 g and 300 g were used. Status epilepticus (SE) was induced in rats using 385 mg/kg (i.p.) of pilocarpine. After 60 days from the first spontaneous seizure, rats were submitted to heart rate measurements and then, one day after, euthanized, and the heart was dissected and submitted to constant flow Langendorff approaches to evaluate coronary reactivity. Rats with epilepsy showed higher resting heart rate and impairment of coronary vasodilation induced by bradykinin. Endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD) presented a reduced staining in coronary arteries, and eNOS expression was also reduced in the left ventricle of rats with epilepsy. Our findings demonstrated, for the first time, that epilepsy can cause impairment of coronary arteries reactivity, probably because of an endothelial dependent mechanism.


Assuntos
Doença da Artéria Coronariana/etiologia , Epilepsia/complicações , Agonistas Muscarínicos/farmacologia , Pilocarpina/farmacologia , Vasodilatação/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar
3.
PLoS One ; 9(10): e109620, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25279805

RESUMO

Hypernatremia stimulates the secretion of oxytocin (OT), but the physiological role of OT remains unclear. The present study sought to determine the involvement of OT and renal nerves in the renal responses to an intravenous infusion of hypertonic saline. Male Wistar rats (280-350 g) were anesthetized with sodium thiopental (40 mg. kg(-1), i.v.). A bladder cannula was implanted for collection of urine. Animals were also instrumented for measurement of mean arterial pressure (MAP) and renal blood flow (RBF). Renal vascular conductance (RVC) was calculated as the ratio of RBF by MAP. In anesthetized rats (n = 6), OT infusion (0.03 µg • kg(-1), i.v.) induced renal vasodilation. Consistent with this result, ex vivo experiments demonstrated that OT caused renal artery relaxation. Blockade of OT receptors (OXTR) reduced these responses to OT, indicating a direct effect of this peptide on OXTR on this artery. Hypertonic saline (3 M NaCl, 1.8 ml • kg(-1) b.wt., i.v.) was infused over 60 s. In sham rats (n = 6), hypertonic saline induced renal vasodilation. The OXTR antagonist (AT; atosiban, 40 µg • kg(-1) • h(-1), i.v.; n = 7) and renal denervation (RX) reduced the renal vasodilation induced by hypernatremia. The combination of atosiban and renal denervation (RX+AT; n = 7) completely abolished the renal vasodilation induced by sodium overload. Intact rats excreted 51% of the injected sodium within 90 min. Natriuresis was slightly blunted by atosiban and renal denervation (42% and 39% of load, respectively), whereas atosiban with renal denervation reduced sodium excretion to 16% of the load. These results suggest that OT and renal nerves are involved in renal vasodilation and natriuresis induced by acute plasma hypernatremia.


Assuntos
Vias Eferentes , Hipernatremia/fisiopatologia , Ocitocina/farmacologia , Artéria Renal/patologia , Solução Salina Hipertônica/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Frequência Cardíaca , Masculino , Ocitócicos/farmacologia , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Artéria Renal/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Ther Adv Cardiovasc Dis ; 5(1): 11-22, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21282201

RESUMO

AIMS: We hypothesized that a high-carbohydrate diet affects the cardiac performance by interfering in the metabolic steps involved in energy transfer in this organ. To verify this, we investigated the myocardial utilization of different substrates and contractile function in rats fed a high-carbohydrate diet, under normal flow and ischemia. METHODS: and RESULTS: Male Wistar rats were fed over 9 days with standard (39.5% carbohydrate, 8% fiber) or high-carbohydrate diet (58% carbohydrate) and, afterwards, their cardiac function was examined using isolated heart preparations. The high-carbohydrate diet decreased the activity of the lipoprotein lipase, utilization of fatty acids, expression of the gene of peroxisome proliferator-activated receptor α and its target enzymes. In addition, decreased GLUT4 mass, glucose uptake, glycogen content and glycolytic intermediates were also observed. High-carbohydrate hearts displayed weaker activation of the glycolytic pathway during ischemia, according to minor production of lactate, in relation to control hearts. The functional impairment caused by high-carbohydrate diet shown by the decrease in the ventricular systolic strength, +dT/dt and -dT/dt was, at least in part, due to the low availability of adenosine triphosphate (ATP). CONCLUSION: Our data suggest that a high-carbohydrate diet can damage myocardial contractile function by decreasing the cardiac utilization of glucose and fatty acids and, consequently, the ATP pool.


Assuntos
Carboidratos da Dieta/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Glucose/metabolismo , Contração Miocárdica , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Função Ventricular , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Metabolismo Energético/genética , Regulação Enzimológica da Expressão Gênica , Glicólise , Metabolismo dos Lipídeos/genética , Lipase Lipoproteica/metabolismo , Masculino , Isquemia Miocárdica/genética , Isquemia Miocárdica/fisiopatologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA