Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pediatr ; 244: 139-147.e2, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34995642

RESUMO

OBJECTIVE: To determine the outcomes of patients with later-onset Pompe disease (LOPD) identified through newborn screening (NBS). STUDY DESIGN: A prospective observational cohort study was conducted from the initiation of Pompe disease NBS by following subjects every 3-12 months for motor development and biochemical markers. RESULTS: Between 2005 and 2018, 39 of 994 975 newborns evaluated were classified as having LOPD based on low acid α-glucosidase (GAA) activity but no cardiac involvement at the time of screening. As of December 2020, 8 of these 39 infants (21%) were treated with enzyme replacement therapy owing to persistent elevation of creatine kinase (CK), cardiac involvement, or developmental delay. All subjects' physical performance and endurance improved after treatment. Subjects carrying c.[752C>T;761C>T] and c.[546+5G>T; 1726G>A] presented a phenotype of nonprogressive hypotonia, muscle weakness, and impairment in physical fitness tests, but they have not received treatment. CONCLUSIONS: One-fifth of subjects identified through NBS as having LOPD developed symptoms after a follow-up of up to 15 years. NBS was found to facilitate the early detection and early treatment of those subjects. GAA variants c.[752C>T;761C>T] and c.[546+5G>T; 1726G>A] might not cause Pompe disease but still may affect skeletal muscle function.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Terapia de Reposição de Enzimas , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Humanos , Recém-Nascido , Triagem Neonatal , Estudos Prospectivos , alfa-Glucosidases/genética
2.
Hum Mutat ; 42(11): 1461-1472, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34405923

RESUMO

Patients with the common c.-32-13T > G/null GAA genotype have a broad variation in age at symptom onset, ranging from early childhood to late adulthood. Phenotypic variation for other common GAA genotypes remains largely unexplored. Here, we analyzed variation in age at symptom onset for the most common GAA genotypes using the updated and extended Pompe GAA variant database. Patients with the c.2647-7G > A/null genotype invariably presented symptoms at adulthood, while the c.-32-13T > G/null, c.546G > T/null, c.1076-22T > G/null, c.2238G > C/null, and c.2173C > T/null genotypes led to presentations from early childhood up to late adulthood. The c.1309C > T/null genotype was associated with onset at early to late childhood. Symptom onset shifted toward higher ages in homozygous patients. These findings indicate that a broad variation in symptom onset occurs for various common GAA genotypes, suggesting the presence of modifying factors. We identified three new compound heterozygous c.-32-13T > G/null patients who carried the genetic modifier c.510C > T and who showed symptom onset at childhood. While c.510C > T acted by lowering GAA enzyme activity, other putative genetic modifiers did not at the group level, suggesting that these act in trans on processes downstream of GAA enzyme activity.


Assuntos
Genótipo , Doença de Depósito de Glicogênio Tipo II/genética , Fenótipo , alfa-Glucosidases/genética , Adulto , Criança , Terapia de Reposição de Enzimas , Doença de Depósito de Glicogênio Tipo II/terapia , Humanos , Mutação
3.
Hum Mutat ; 42(2): 119-134, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33560568

RESUMO

Pompe disease is an inherited disorder caused by disease-associated variants in the acid α-glucosidase gene (GAA). The Pompe disease GAA variant database (http://www.pompevariantdatabase.nl) is a curated, open-source, disease-specific database, and lists disease-associated GAA variants, in silico predictions, and clinical phenotypes reported until 2016. Here, we provide an update to include 226 disease-associated variants that were published until 2020. We also listed 148 common GAA sequence variants that do not cause Pompe disease. GAA variants with unknown severity that were identified only in newborn screening programs were listed as a new feature to indicate the reason why phenotypes were still unknown. Expression studies were performed for common missense variants to predict their severity. The updated Pompe disease GAA variant database now includes 648 disease-associated variants, 26 variants from newborn screening, and 237 variants with unknown severity. Regular updates of the Pompe disease GAA variant database will be required to improve genetic counseling and the study of genotype-phenotype relationships.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Triagem Neonatal , Predisposição Genética para Doença , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/genética , Humanos , Recém-Nascido , Fenótipo , alfa-Glucosidases/genética
4.
Mol Ther Methods Clin Dev ; 17: 337-348, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32071926

RESUMO

Pompe disease is a metabolic disorder caused by a deficiency of the glycogen-hydrolyzing lysosomal enzyme acid α-glucosidase (GAA), which leads to progressive muscle wasting. This autosomal-recessive disorder is the result of disease-associated variants located in the GAA gene. In the present study, we performed extended molecular diagnostic analysis to identify novel disease-associated variants in six suspected Pompe patients from four different families for which conventional diagnostic assays were insufficient. Additional assays, such as a generic-splicing assay, minigene analysis, SNP array analysis, and targeted Sanger sequencing, allowed the identification of an exonic deletion, a promoter deletion, and a novel splicing variant located in the 5' UTR. Furthermore, we describe the diagnostic process for an infantile patient with an atypical phenotype, consisting of left ventricular hypertrophy but no signs of muscle weakness or motor problems. This led to the identification of a genetic mosaicism for a very severe GAA variant caused by a segmental uniparental isodisomy (UPD). With this study, we aim to emphasize the need for additional analyses to detect new disease-associated GAA variants and non-Mendelian genotypes in Pompe disease where conventional DNA diagnostic assays are insufficient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA