Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Opin Insect Sci ; 63: 101194, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38522648

RESUMO

Mosquitoes are vectors for arboviruses, such as dengue, Zika, and Chikungunya. Symbiotic interactions can affect the intrinsic ability of mosquitoes to acquire and transmit arboviruses, referred to as vector competence. Insect-specific viruses (ISVs) are commonly found in symbiotic associations with mosquitoes in the wild and can affect many aspects of mosquito biology. Here, we review current knowledge on the effects of symbiotic ISV-mosquito interactions on vector competence. We discuss potential mechanisms underlying these interactions and their implications for shaping new biological control strategies. Finally, we highlight the need for field data analyzing the circulation of ISVs in mosquitoes associated with mechanistic studies in the laboratory.


Assuntos
Arbovírus , Mosquitos Vetores , Simbiose , Animais , Mosquitos Vetores/virologia , Mosquitos Vetores/fisiologia , Arbovírus/fisiologia , Vírus de Insetos/fisiologia , Culicidae/virologia , Culicidae/fisiologia , Infecções por Arbovirus/transmissão
2.
STAR Protoc ; 4(1): 102033, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853733

RESUMO

Characterization of double-stranded (ds)RNAs is relevant to the understanding of viral replication and immune sensing. Here, we provide a protocol describing the use of anti-dsRNA antibodies for immunofluorescence and immunoblotting in virus-infected insect cells, which can also be applied to tissues and other organisms. We describe the procedures to prepare insect cells for viral infection, followed by RNA extraction and in vitro production of synthetic dsRNA controls. We then detail the steps for dsRNA detection by immunoblotting and immunofluorescence. For complete details on the use and execution of this protocol, please refer to de Faria et al. (2022).1.


Assuntos
Vírus de Insetos , Insetos , RNA de Cadeia Dupla , Insetos/citologia , Insetos/virologia , Vírus de Insetos/genética , Imunofluorescência , Immunoblotting
3.
Nat Microbiol ; 8(1): 135-149, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36604511

RESUMO

Aedes aegypti and A. albopictus mosquitoes are the main vectors for dengue virus (DENV) and other arboviruses, including Zika virus (ZIKV). Understanding the factors that affect transmission of arboviruses from mosquitoes to humans is a priority because it could inform public health and targeted interventions. Reasoning that interactions among viruses in the vector insect might affect transmission, we analysed the viromes of 815 urban Aedes mosquitoes collected from 12 countries worldwide. Two mosquito-specific viruses, Phasi Charoen-like virus (PCLV) and Humaita Tubiacanga virus (HTV), were the most abundant in A. aegypti worldwide. Spatiotemporal analyses of virus circulation in an endemic urban area revealed a 200% increase in chances of having DENV in wild A. aegypti mosquitoes when both HTV and PCLV were present. Using a mouse model in the laboratory, we showed that the presence of HTV and PCLV increased the ability of mosquitoes to transmit DENV and ZIKV to a vertebrate host. By transcriptomic analysis, we found that in DENV-infected mosquitoes, HTV and PCLV block the downregulation of histone H4, which we identify as an important proviral host factor in vivo.


Assuntos
Aedes , Arbovírus , Vírus da Dengue , Dengue , Vírus de Insetos , Vírus de RNA , Infecção por Zika virus , Zika virus , Animais , Humanos , Zika virus/genética , Vírus de Insetos/fisiologia , Vírus da Dengue/genética , Mosquitos Vetores , Arbovírus/genética
4.
Cell Rep ; 39(12): 110976, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732126

RESUMO

dsRNA sensing triggers antiviral responses against RNA and DNA viruses in diverse eukaryotes. In Drosophila, Invertebrate iridescent virus 6 (IIV-6), a large DNA virus, triggers production of small interfering RNAs (siRNAs) by the dsRNA sensor Dicer-2. Here, we show that host RNA polymerase II (RNAPII) bidirectionally transcribes specific AT-rich regions of the IIV-6 DNA genome to generate dsRNA. Both replicative and naked IIV-6 genomes trigger production of dsRNA in Drosophila cells, implying direct sensing of invading DNA. Loquacious-PD, a Dicer-2 co-factor essential for the biogenesis of endogenous siRNAs, is dispensable for processing of IIV-6-derived dsRNAs, which suggests that they are distinct. Consistent with this finding, inhibition of the RNAPII co-factor P-TEFb affects the synthesis of endogenous, but not virus-derived, dsRNA. Altogether, our results suggest that a non-canonical RNAPII complex recognizes invading viral DNA to synthesize virus-derived dsRNA, which activates the antiviral siRNA pathway in Drosophila.


Assuntos
DNA Viral , Drosophila , Animais , Antivirais , Vírus de DNA/genética , Drosophila/metabolismo , Iridovirus , Interferência de RNA , RNA Polimerase II/metabolismo , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo
5.
Nat Microbiol ; 3(12): 1385-1393, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30374169

RESUMO

Dengue virus (DENV) is an arbovirus transmitted to humans by Aedes mosquitoes1. In the insect vector, the small interfering RNA (siRNA) pathway is an important antiviral mechanism against DENV2-5. However, it remains unclear when and where the siRNA pathway acts during the virus cycle. Here, we show that the siRNA pathway fails to efficiently silence DENV in the midgut of Aedes aegypti although it is essential to restrict systemic replication. Accumulation of DENV-derived siRNAs in the midgut reveals that impaired silencing results from a defect downstream of small RNA biogenesis. Notably, silencing triggered by endogenous and exogenous dsRNAs remained effective in the midgut where known components of the siRNA pathway, including the double-stranded RNA (dsRNA)-binding proteins Loquacious and r2d2, had normal expression levels. We identified an Aedes-specific paralogue of loquacious and r2d2, hereafter named loqs2, which is not expressed in the midgut. Loqs2 interacts with Loquacious and r2d2 and is required to control systemic replication of DENV and also Zika virus. Furthermore, ectopic expression of Loqs2 in the midgut of transgenic mosquitoes is sufficient to restrict DENV replication and dissemination. Together, our data reveal a mechanism of tissue-specific regulation of the mosquito siRNA pathway controlled by Loqs2.


Assuntos
Aedes/metabolismo , Proteínas de Transporte/metabolismo , Vírus da Dengue/metabolismo , Expressão Ectópica do Gene , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Aedes/genética , Aedes/virologia , Animais , Animais Geneticamente Modificados , Antivirais/metabolismo , Antivirais/farmacologia , Proteínas de Transporte/genética , Replicação do DNA , Dengue/virologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , Vírus da Dengue/patogenicidade , Proteínas de Drosophila , Feminino , Trato Gastrointestinal/virologia , Inativação Gênica , Interações Hospedeiro-Patógeno , Mosquitos Vetores/virologia , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/farmacologia , Replicação Viral , Zika virus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA